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Abstract. Many articles have recently been devoted to Mahler equa-
tions, partly because of their links with other branches of mathematics
such as automata theory. Hahn series (a generalization of the Puiseux
series allowing arbitrary exponents of the indeterminate as long as the
set that supports them is well-ordered) play a central role in the theory
of Mahler equations. In this paper, we address the following fundamen-
tal question: is there an algorithm to calculate the Hahn series solutions
of a given linear Mahler equation? What makes this question interest-
ing is the fact that the Hahn series appearing in this context can have
complicated supports with infinitely many accumulation points. Our
(positive) answer to the above question involves among other things the
construction of a computable well-ordered receptacle for the supports of
the potential Hahn series solutions.
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1. Introduction

Let K be a field (of any characteristic and not necessarily algebraically
closed). A linear Mahler equation with coefficients in K(z) is a functional
equation of the form

(1) an(z)y(z`
n
) + an−1(z)y(z`

n−1
) + · · ·+ a0(z)y(z) = 0

for some ` ∈ Z≥2, n ∈ Z≥0 and a0(z), . . . , an(z) ∈ K(z) with a0(z)an(z) 6= 0.
These equations are named after K. Mahler who wrote influential papers

on the arithmetic nature of the values taken by solutions of such equations
at algebraic points; see [Mah29, Mah30a, Mah30b]. Since then, the theory
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has undergone many developments, in various directions and is nowadays a
very active field of research with many facets. The interactions between the
theory of Mahler equations and other fields of mathematics have been fruitful
in recent years. This is well illustrated by the work of Shäfke and Singer in
[SS19] which gives a new proof of a conjecture of Loxton and van der Poorten
– previously established by Adamczewski and Bell in [AB17] – and, there-
fore, a new proof of Cobham’s theorem in automata theory by using tools
coming from the theory of functional equations. Here are some references
[Kub77, LvdP78, Mas82, Ran92, Dum93, Bec94, Nis96, DF96, Zan98, CZ02,
AS03, Pel09, Ngu11, Ngu12, Phi15, BCZ16, AB17, AF17, AF18, DHR18,
CDDM18, BCCD19, Fer18, Ada19, SS19, Roq21, Pou21, ADH21, Roq22,
FP22, ABS22].

The Hahn series play a fundamental role in the theory of Mahler equations.
Let us first look at the following simple but instructive example:

(2) z`f(z`
2
)− (z` + z)f(z`) + zf(z) = 0.

This equation has the obvious constant solution f1(z) = 1 and any other
solution in the field of formal Laurent series K((z)) or even in the field of
Puiseux series P =

⋃
d∈Z≥1

K((z
1
d )) is of the form λf1(z) for some λ ∈ K.

However, a new solution can be found in the field H of Hahn series1 with
coefficients in K and value group Q, namely

(3) f2(z) =
∑
k≥1

z
− 1

`k .

Hence, working in the field of Hahn series, we have found two K-linearly
independent solutions of the above linear Mahler equation of order n = 2
(i.e., as many K-linearly independent solutions as the order of the equation),
which is satisfactory.

Actually2, when K = Q, it follows from [Roq21] that the difference field
(H , φ`), where φ` is the field automorphism of H sending f(z) on f(z`),
has a difference ring extension (A, φ`) such that

• for any c ∈ Q×, there exists ec ∈ A satisfying φ`(ec) = cec;
• there exists l ∈ A satisfying φ`(l) = l + 1;
• any linear Mahler equation of the form (1) has n Q-linearly indepen-
dent solutions y1, . . . , yn ∈ A of the form

(4) yi =
∑

(c,j)∈Q××Z≥0

fi,c,jecl
j

where the sum is finite and the fi,c,j belong to H .
This leads to the following fundamental question to which this article is
devoted.

Question 1. Is there an algorithm to calculate the Hahn series solutions of
an equation of the form (1)?

1See section 2 for the concept of Hahn series.
2In fact, the main results of [Roq21] and their proofs extend mutatis mutandis to an
arbitrary algebraically closed field K.
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Before formulating this question more formally, let us say a few words
about the calculation of the solutions of linear Mahler equations such as
(1) in the more usual ring of formal power series K[[z]]. By “calculating”
the solutions of an equation of the form (1) in K[[z]], we usually mean
calculating the formal power series solutions truncated to a specified order,
i.e., N ∈ Z≥0 being given, we want to determine the

∑
k∈{0,...,N} fkz

k ∈ K[z]

for which there exists a solution

f̃(z) =
∑
k∈Z≥0

f̃kz
k ∈ K[[z]]

of (1) such that

(5)
∑

k∈{0,...,N}

f̃kz
k =

∑
k∈{0,...,N}

fkz
k.

A natural formalization of Question 1 is obtained by replacing the sets
of indices Z≥0 and {0, . . . , N} by Q and by an arbitrary finite subset E of
Q respectively. More explicitly, this leads to the following formalization of
Question 1: a finite subset E of Q being given, we want to determine the∑

γ∈E fγz
γ ∈H for which there exists a solution

f̃(z) =
∑
γ∈Q

f̃γz
γ ∈H

of (1) such that

(6)
∑
γ∈E

f̃γz
γ =

∑
γ∈E

fγz
γ .

Remark 2. (1) An arbitrary Hahn series truncated at an given order has
infinitely many nonzero coefficients in general. For instance, the truncation
at order 0 of the Hahn series f2(z) given by (3) is f2(z) itself and has in-
finitely many nonzero coefficients. This is why Question 1 is not stated in
terms of truncated Hahn series.

(2) The truncation
∑

k∈{0,...,N} f̃kz
k of f̃(z) =

∑
k∈Z≥0

f̃kz
k ∈ K[[z]] can

be interpreted as what remains of f̃(z) when only the indices k ∈ Z≥0 such
that H(k) ≤ N are retained, where H denotes the naive height function
defined, for any rational number x = a/b where a ∈ Z, b ∈ Z \ {0} are
coprime, by H(x) = max{|a|, |b|}. This leads to an alternative formulation
of Question 1 similar to that given above but with E replaced by EN = {γ ∈
Q | H(γ) ≤ N}. Since EN is a finite subset of Q and since any finite subset
E of Q is a subset of EN for some N ∈ Z≥0, the formulation of Question 1
given above is equivalent to this one.

Note that, since we are not imposing any conditions on E , the solution
f̃(z) may not be uniquely determined by (6). Fortunately, there is a simple
condition guaranteeing that f̃(z) is uniquely determined by (6): for this to
be true, it suffices that −S ⊂ E where S is the (finite and explicit) set of
slopes of (1) defined in section 3; this follows directly from Corollary 13. So,
−S can serve as a set of indices for “initial coefficients” of all Hahn series
solutions of (1) and, in the special case E = −S, Question 1 aims to describe
the possible “initial coefficients”. However, we draw the reader’s attention to
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the fact that, even if one knows explicitly the “initial part”
∑

γ∈−S f̃γz
γ of a

solution f̃(z) =
∑

γ∈Q f̃γz
γ ∈ H of (1), it is not obvious at all to compute

the value of f̃γ for a given γ ∈ Q \ −S from it, whence the importance of
allowing an arbitrary finite set E in Question 1.

An algorithm to find the solutions in the field of Puiseux series P =⋃
d∈Z≥1

K((z
1
d )) of a given Mahler equation has been given in [CDDM18]3.

It consists in bounding the ramification of these solutions in order to reduce
the problem to the search of the solutions in a specific field of ramified
Laurent series K((z

1
d )) for an explicit d ∈ Z≥1. What makes the search of

the Hahn series solutions interesting is precisely the fact that one cannot
reduce the problem to the search of (ramified) Laurent series solutions: one
has to deal with Hahn series that might have rather involved supports. The
support supp f2(z) = {− 1

`k
| k ∈ Z≥1} of the Hahn series f2(z) given by (3)

is one of the simplest support one can expect for a (non Puiseux) Hahn series
solution of a linear Mahler equation. Much more complicated supports may
arise. For instance, the Hahn series f2(z)2 satisfies a linear Mahler equation
of order 3 and, if the characteristic of K is not equal to 2, its support
supp f2(z)2 = {− 1

`k
− 1

`k′
| k, k′ ∈ Z≥1} has infinitely many accumulation

points, namely any element of {0} ∪ {− 1
`k
| k ∈ Z≥1}. These complicated

supports induce many difficulties.

1.1. Outline of our answer to Question 1. Our approach to answer
Question 1 relies on the following two ingredients.

(1) We introduce a subset V of Q satisfying the following properties:
- V contains the support of any Hahn series solution of (1);
- V is well-ordered;
- V is computable in the sense that there exists an algorithm to
determine whether a given rational number belongs to V or not;

- V satisfies a technical but important condition that we do not
state here.

(2) A finite set E ⊂ V being given, we show that we can compute al-
gorithmically a finite subset R of V containing E such that, for any
f(z) =

∑
γ∈R fγz

γ ∈H , the following properties are equivalent:
- there exists a solution f̃(z) =

∑
γ∈Q f̃γz

γ ∈H of (1) such that∑
γ∈R

f̃γz
γ =

∑
γ∈R

fγz
γ ;

- the support of the Hahn series

(7) an(z)f(z`
n
) + an−1(z)f(z`

n−1
) + · · ·+ a0(z)f(z)

is disjoint from ψ(R) where ψ : Q → Q is an explicit map
defined in section 3.4.

This reduces Question 1 to a question of linear algebra. Indeed, up to
multiplying (1) by a suitable nonzero polynomial, one can assume that the

3We mention for the interested reader that, when K ⊂ C, any Puiseux series solution is
actually convergent; see [BR13, Lem. 4] for example.
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ai(z) are polynomials. Then, one can compute an explicit family of linear
maps Fδ : KR → K such that, for any f(z) =

∑
γ∈R fγz

γ ∈H ,

an(z)f(z`
n
) + an−1(z)f(z`

n−1
) + · · ·+ a0(z)f(z) =

∑
δ∈Q

Fδ((fγ)γ∈R)zδ.

The fact that the support of (7) is disjoint from ψ(R) is equivalent to the
fact that, for all δ ∈ ψ(R), Fδ((fγ)γ∈R) = 0. This is an (explicit) system
of linear equations in the (fγ)γ∈R that can be solved algorithmically. This
solves Question 1.

1.2. Organization of the paper. In section 2, we recall basic definitions
and properties of the Hahn series. In section 3, we first recall the notions
of Newton polygons and of slopes. We then state and prove several results
used elsewhere in the paper. In section 4, we give an algorithm to compute
a set V having the properties listed in section 1.1 above. In sections 6 and
7, we give an algorithm to compute a set R having the properties listed
in section 1.1 above. In section 8, we describe an algorithm that answers
Question 1 in the affirmative. In section 9, we apply our main algorithm to
a classical equation.

Acknowledgements. Our warmest thanks go to the referees for their care-
ful reading and their many suggestions, which have considerably improved
the readability of this paper. The work of the second author was supported
by the ANR De rerum natura project, grant ANR-19-CE40-0018 of the
French Agence Nationale de la Recherche.

2. The ring of Hahn series

We denote by H the field of Hahn series with coefficients in the field K
and with value group Q (see [Hah07]). An element of H is an (fγ)γ∈Q ∈ KQ

whose support
supp(fγ)γ∈Q = {γ ∈ Q | fγ 6= 0}

is well-ordered, i.e., such that any nonempty subset of this support has a
least element. An element (fγ)γ∈Q of H is usually (and will be) denoted by

f =
∑
γ∈Q

fγz
γ .

The sum and product of two elements f =
∑

γ∈Q fγz
γ and g =

∑
γ∈Q gγz

γ

of H are respectively defined by

f + g =
∑
γ∈Q

(fγ + gγ)zγ

and

fg =
∑
γ∈Q

 ∑
γ′+γ′′=γ

fγ′gγ′′

 zγ .

(Note that there are only finitely many (γ′, γ′′) ∈ Q×Q such that γ′+γ′′ = γ
and fγ′gγ′′ 6= 0.) For a proof that H endowed with this ring structure is a
field, we refer to [Neu49, Th. 5.7].
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Since the support of any Hahn series is well-ordered, one can define the
z-adic valuation

val : H → Q ∪ {+∞}
f 7→ val f = min supp f

with the convention min ∅ = +∞. It satisfies the usual properties of a
valuation, namely :

• ∀f ∈H , (val f = +∞⇐⇒ f = 0);
• ∀f, g ∈H ,

(8) val(fg) = val f + val g

and

(9) val(f + g) > min{val f, val g}.
For any subset Q of Q, we let H|Q be the K-vector space of Hahn series

with support in Q, i.e.,
H|Q = {f ∈H | supp f ⊂ Q}.

We have a natural K-linear map

•|Q : H → H|Q
f =

∑
γ∈Q fγz

γ 7→ f|Q :=
∑

γ∈Q fγz
γ .

For any f, g ∈H and any Q ⊂ Q, we will say that “f = g on Q” if f|Q = g|Q.

3. Newton polygons

Let φ` be the field automorphism of H sending f(z) on f(z`). We denote
by

DK[z] = K[z]〈φ`〉
the Ore algebra of noncommutative polynomials with coefficients in K[z]
such that, for all f ∈ K[z], φ`f = φ`(f)φ`. An element of DK[z] will be
called a Mahler operator.

In what follows, we consider an inhomogeneous Mahler equation

(10) an(z)y(z`
n
) + an−1(z)y(z`

n−1
) + · · ·+ a0(z)y = a−∞(z)

with a0(z), . . . , an(z) ∈ K[z] and a−∞(z) ∈ H such that a0(z)an(z) 6= 0.
This equation can be rewritten as

L(y) = a−∞

where

(11) L = anφ
n
` + an−1φ

n−1
` + · · ·+ a0 ∈ DK[z].

3.1. Newton polygon. Following [CDDM18], we define the Newton poly-
gon N (L, a−∞) of (10) as the lower convex hull of the set

P(L, a−∞) = {(`i, j) | i ∈ {−∞, 0, . . . , n}, j ∈ supp ai} ⊂ R2

with the convention `−∞ = 0. In other terms, N (L, a−∞) is the convex hull
of the set

(12) {(`i, j) | i ∈ {−∞, 0, . . . , n}, j ≥ val ai} ⊂ R2.
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3.2. Slopes. The polygon N (L, a∞) is delimited by two vertical half lines
and by finitely many nonvertical vectors having pairwise distinct slopes,
called the slopes of (10). The set of slopes of (10) will be denoted by
S(L, a−∞). The following result gives an useful characterization of these
slopes.

Lemma 3. The following properties relative to µ ∈ Q are equivalent:
(i) µ belongs to S(L, a−∞);
(ii) there exist distinct i1, i2 ∈ {−∞, 0, . . . , n} such that

(13) val ai1 − `i1µ = val ai2 − `i2µ = min
i∈{−∞,0,...,n}

val ai − `iµ.

Moreover, if µ belongs to S(L, a−∞), then the equality (13) is satisfied if
and only if (`i1 , val ai1) and (`i2 , val ai2) belong to the edge of slope µ of
N (L, a−∞).

Proof. The fact that µ satisfies (i) is equivalent to the fact that µ is the slope
of a nonvertical edge of N (L, a−∞) which is in turn equivalent to the fact
that there exists b ∈ R such that the affine line y − µx = b contains an edge
of N (L, a−∞).

But, since N (L, a−∞) is the convex hull of the set (12), the affine line
y−µx = b contains an edge of N (L, a−∞) if and only the following properties
are satisfied:

• there exist distinct i1, i2 ∈ {−∞, 0, . . . , n} such that (`i1 , val ai1) and
(`i2 , val ai2) belong to the line y − µx = b;
• for any i ∈ {−∞, 0, . . . , n}, if val ai < +∞, then (`i, val ai) belongs
to the half space y − µx ≥ b.

The latter two properties are of course equivalent to the fact that there exist
distinct i1, i2 ∈ {−∞, 0, . . . , n} such that

b = val ai1 − `i1µ = val ai2 − `i2µ = min
i∈{−∞,0,...,n}

val ai − `iµ.

This shows that (i) and (ii) are equivalent.
Last, if µ belongs to S(L, a−∞), then the previous discussion shows that

the equation of the line containing the edge of slope µ of N (L, a−∞) is
y − µx = b with b = mini∈{−∞,0,...,n} val ai − `iµ. The last assertion of the
lemma follows directly from this. �

3.3. Newton polygon and slopes in the homogeneous case. In the
homogeneous case, that is when a−∞ = 0, we will omit a−∞ in the previous
notations and terminologies. For instance, N (L, 0) will simply be denoted
by N (L) and will be called the Newton polygon of L.

Remark 4. Note, for later use, the following simple but important fact:
since the coefficients a0, . . . , an of L are in K[z], the set P(L) is finite.

We denote by
µ1 < · · · < µK

the slopes of L, so that

S(L) = {µ1, . . . , µK}.
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We let
p0, . . . , pK ∈ Z≥0 × Z

be the vertices, ordered by increasing abscissa, of the polygon N (L). For
any k ∈ {0, . . . ,K}, we let αk be the unique element of {0, . . . , n} and βk be
the unique element of Z such that

pk = (`αk , βk) = (`αk , val aαk).

Note that α0 = 0 and that αK = n. With these notations, the edge of N (L)
with slope µk has pk−1 = (`αk−1 , βk−1) as its left endpoint and pk = (`αk , βk)
as its right endpoint.

Example 5. The main algorithm presented in this paper will be illustrated
in section 9 on the Mahler operator of order 2 given by

(14) L = zφ2
2 + (z − 1)φ2 − 2.

The set P(L), the Newton polygon N (L) and the vertices pk associated to
this specific L are given in section 9.1 and represented in Figure 2.

We note the following result for further use.

Lemma 6. For all (`i, j) ∈ P(L) and all k ∈ {1, . . . ,K}, we have:

(15) −`iµk + j ≥ −`αkµk + βk = −`αk−1µk + βk−1.

In geometric terms, this means that the minimum of the ordinates of the
projections of points of P(L) along a line of slope µk on the y-axis is reached
at pk−1 and at pk.

Proof. Lemma 3 applied with µ = µk, (`i1 , val ai1) = pk and (`i2 , val ai2) =
pk−1 ensures that −`αkµk + βk = −`αk−1µk + βk−1 = mini∈{0,...,n}−`iµk +
val ai. The inequality (15) follows from this and from the fact that, for all
(`i, j) ∈ P(L), we have j ≥ val ai and, hence, −`iµk+j ≥ −`iµk+val ai. �

3.4. The maps Ψ, ψ and π. In the rest of the paper, we will intensively
use the following three maps:

(16)

Ψ : Q → {Finite subsets of Q }
v 7→ {v`i + j | (`i, j) ∈ P(L)}

ψ : Q → Q
v 7→ min Ψ(v) = min{v`i + j | (`i, j) ∈ P(L)}

= min{v`i + val ai | i ∈ {0, . . . , n}}
and

π : Q → Q
q 7→ max

{
q−j
`i
| (`i, j) ∈ P(L)

}
= −minS(L, zq) .

These maps are well-defined because P(L) is finite according to Remark 4.
In geometric terms:

• Ψ(v) is the set of ordinates of the projection of the elements of P(L)
along a line of slope −v onto the y-axis;
• ψ(v) is the least of these ordinates;
• π(q) is the opposite of the minimum of the slopes of the lines passing
through (0, q) and an element of P(L).
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Let us now give a more computational interpretation of these maps. Set-
ting, for any i ∈ {0, . . . , n},

ai =
∑

j∈supp ai

ai,jz
j ,

we have

(17) L(zv) =
n∑
i=0

ai,jz
v`i+j =

∑
(`i,j)∈P(L)

ai,jz
v`i+j .

This formula shows that Ψ(v) is a natural receptacle for the support of L(zv).
Indeed, we have

(18) suppL(zv) ⊂ Ψ(v),

this inclusion being an equality for all but finitely many v ∈ Q, e.g., for
all v ∈ Q such that the exponents v`i + j involved in (17) are two by two
distinct, because there is no cancellation between terms on the right-hand
side of (17) in this case. It follows immediately from these remarks that

ψ(v) ≤ valL(zv)

and that this inequality is an equality for all but finitely many v ∈ Q (actu-
ally, Lemma 11 below ensures that this is the case for all v ∈ Q \ −S(L)).
Last, it is easily seen that, for all but finitely many q ∈ Q, the equation
valL(zw) = q has a unique solution w ∈ Q and that it is given by w = π(q).

It will be convenient to set

ψ(+∞) = π(+∞) = +∞.

We shall now give several properties of the maps ψ and π which will shall
use later.

Lemma 7. The maps ψ : Q→ Q and π : Q→ Q are increasing4 bijections
and inverse of each other.

Proof. The fact that these maps are increasing is immediate from their def-
initions. In particular, ψ and π are injective. In order to prove that ψ and
π are inverse of each other, it is thus sufficient to prove that ψ(π(q)) = q for
every q ∈ Q. Let us prove this. On the one hand, by definition of π, there
exists (`i, j) ∈ P(L) such that

π(q) =
q − j
`i

.

Since (`i, j) ∈ P(L), it follows from the definition of ψ that

ψ(π(q)) ≤ `iπ(q) + j = `i
q − j
`i

+ j = q.

On the other hand, by definition of ψ, there exists (`i
′
, j′) ∈ P(L) such that

ψ(π(q)) = `i
′
π(q) + j′.

4In the whole paper, a function f : Q → Q is said to be increasing if, for all x, y ∈ Q,
(y > x ⇒ f(y) > f(x)). It is nondecreasing if, for all x, y ∈ Q, (y ≥ x ⇒ f(y) ≥ f(x)).
We will use similar terminologies for sequences of real numbers or of sets.
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But, since (`i
′
, j′) ∈ P(L), it follows from the definition of π that

π(q) ≥ q − j′

`i′
.

So, we have

ψ(π(q)) ≥ `i′ q − j
′

`i′
+ j′ = q.

Finally, we obtain ψ(π(q)) = q. �

Lemma 8. Consider v ∈ Q. If k ∈ {1, . . . ,K + 1} is such that −µk ≤ v ≤
−µk−1, with the conventions µ0 = −∞ and µK+1 = +∞, then

(19) ψ(v) = `αk−1v + βk−1 .

In geometric terms, the formula (19) means that ψ(v) is the ordinate of the
projection of pk−1 = (`αk−1 , βk−1) along a line of slope −v on the y-axis.

Proof. By definition, ψ(v) = min{`αv + β | (`α, β) ∈ P(L)} so, in order to
prove the lemma, it is sufficient to prove that, for all (`α, β) ∈ P(L), for all
v ∈ [−µk,−µk−1], `αv+β ≥ `αk−1v+βk−1. In other terms, we have to prove
that, for (`α, β) ∈ P(L), the map

δ : R → R
v 7→ `αv + β − (`αk−1v + βk−1)

takes nonnegative values on [−µk,−µk−1]. Let us prove this.

Let us first assume that k ∈ {2, . . . ,K}. It follows from Lemma 6 (applied
with k − 1 instead of k for the second inequality) that

−`αµk + β ≥ −`αk−1µk + βk−1 and − `αµk−1 + β ≥ −`αk−1µk−1 + βk−1.

Thus δ(−µk) ≥ 0 and δ(−µk−1) ≥ 0. Since δ is affine, it follows that, for all
v ∈ [−µk,−µk−1], δ(v) ≥ 0, as wanted.

Let us now consider the case k = 1. It follows from Lemma 6 that

−`αµ1 + β ≥ −`α0µ1 + β0.

In other words, δ(−µ1) ≥ 0. Since α0 = 0, the function δ is either increasing
or constant. Thus, for any v ≥ −µ1, δ(v) ≥ δ(−µ1) ≥ 0, as wanted.

Let us eventually consider the case k = K + 1. It follows from Lemma 6
that

−`αµK + β ≥ −`αKµK + βK .

In other words, δ(−µK) ≥ 0. Since αK = n ≥ α, the function δ is either
decreasing or constant. Thus, for any v ≤ −µK , δ(v) ≥ δ(−µK) ≥ 0, as
wanted. �

Example 9. An illustration of Lemma 8 for the operator L given by (14) is
given by Figure 2 in Section 9. Indeed, with the hypotheses and notations
of Figure 2, we have K = 2, µ1 = 0, µ2 = 1/2 and Lemma 8 ensures that:

• if 0 ≤ v, then ψ(v) is the ordinate of the projection of p0 along a line
of slope −v on the y-axis;
• if −1/2 ≤ v ≤ 0, then ψ(v) is the ordinate of the projection of p1

along a line of slope −v on the y-axis;
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• if v ≤ −1/2, then ψ(v) is the ordinate of the projection of p2 along
a line of slope −v on the y-axis.

This is indeed what we see on Subfigure 2(a) (resp. 2(b), 2(c)) when v = 1/4
(resp. −1/4, −3/4).

Lemma 10. If −µk ≤ π(q) ≤ −µk−1 for some k ∈ {1, . . . ,K + 1} with the
conventions µ0 = −∞ and µK+1 = +∞, then

(20) π(q) =
q − βk−1

`αk−1
.

In geometric terms, the formula (20) means that π(q) is the opposite of the
slope of the line passing through (0, q) and pk−1 = (`αk−1 , βk−1).

Proof. Applying Lemma 8 with v = π(q) we obtain

ψ(π(q)) = `αk−1π(q) + βk−1.

The result follows from this formula since, according to Lemma 7, we have
q = ψ(π(q)).

�

3.5. Supports, valuations and the maps Ψ, ψ and π. Roughly speak-
ing, the results presented in this section aim to relate the valuations and the
supports of L(f) and of f via the maps Ψ, ψ and π introduced in section
3.4. These results will be used extensively in the remainder of this paper.

Lemma 11. For any f ∈H , we have

valL(f) ≥ ψ(val f).

If val f 6∈ −S(L), then
valL(f) = ψ(val f).

Proof. The result is obvious if f = 0. In the rest of the proof, we assume that
f 6= 0. As a preliminary remark, note the following obvious but important
formula:

(21) min
i∈{0,...,n}

val(aiφ
i
`(f)) = min

i∈{0,...,n}
val ai + `i val f = ψ(val f).

We have

(22) L(f) = anφ
n
` (f) + an−1φ

n−1
` (f) + · · ·+ a0f.

Using (9), we get

valL(f) ≥ min
i∈{0,...,n}

val(aiφ
i
`(f)).

Combining the latter inequality with (21), we get the first assertion of the
Lemma.

Let us prove the contrapositive of the second assertion. Assume that
valL(f) 6= ψ(val f). The first part of the Lemma ensures that valL(f) >
ψ(val f). Using (21), the latter inequality can be rewritten as

valL(f) > min
i∈{0,...,n}

val(aiφ
i
`(f)).



12 C. FAVERJON AND J. ROQUES

Combining the latter inequality with (22), we see that there exist distinct
indices i1, i2 ∈ {0, . . . , n} such that

val(ai1φ
i1
` (f)) = val(ai2φ

i2
` (f)) = min

i∈{0,...,n}
val(aiφ

i
`(f)),

i.e., such that

val ai1 + `i1 val f = val ai2 + `i2 val f = min
i∈{0,...,n}

val ai + `i val f.

Using Lemma 3, we see that val f ∈ −S(L). �

Lemma 12. For any solution f ∈H of (10), we have

val f ∈ {π(val a−∞)} ∪ −S(L).

Proof. If f = 0, then a−∞ = L(f) = L(0) = 0 and, hence, val f = val a−∞ =
+∞. This proves the lemma in this case.

From now on, we assume that f 6= 0. We have

(23) anφ
n
` (f) + an−1φ

n−1
` (f) + · · ·+ a0f − a−∞ = 0.

The equality (23) ensures that there exist distinct indices i1, i2 ∈ {−∞, 0, . . . , n}
such that

val(ai1φ
i1
` (f)) = val(ai2φ

i2
` (f)) = min

i∈{−∞,0,...,n}
val(aiφ

i
`(f)),

i.e., such that

val ai1 + `i1 val f = val ai2 + `i2 val f = min
i∈{−∞,0,...,n}

val ai + `i val f.

In what precedes, when i = −∞, by val(aiφ
i
`(f)) and by val ai + `i val f ,

we mean val a−∞. Using Lemma 3, we see that val f ∈ −S(L, a−∞). We
conclude by using the following inclusion that follows directly from the def-
initions:

−S(L, a−∞) ⊂ {π(val a−∞)} ∪ −S(L).

�

Corollary 13. Two solutions f, g ∈H of (10) are equal if and only if they
are equal on −S(L).

Proof. If two solutions f and g of (10) are equal on −S(L), then h = g − f
is equal to 0 on −S(L) and, hence, valh 6∈ −S(L). But, since h satisfies
L(h) = 0, Lemma 12 ensures that valh ∈ {+∞} ∪ −S(L). Therefore,
valh = +∞ and, hence, h = 0, i.e., f = g as claimed. �

Lemma 14. For any f ∈H , we have suppL(f) ⊂
⋃
γ∈supp f Ψ(γ).

Proof. We set, for any i ∈ {0, . . . , n}, ai =
∑

j∈supp ai
ai,jz

j . We have

L(f) =

n∑
i=0

aiφ
i
`(f) =

n∑
i=0

∑
j∈supp ai

ai,jz
jφi`(f),
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so

suppL(f) ⊂
n⋃
i=0

⋃
j∈supp ai

supp zjφi`(f)

=

n⋃
i=0

⋃
j∈supp ai

⋃
γ∈supp f

{γ`i + j}

=
⋃

γ∈supp f

n⋃
i=0

⋃
j∈supp ai

{γ`i + j}

=
⋃

γ∈supp f

{γ`i + j | (`i, j) ∈ P(L)} =
⋃

γ∈supp f

Ψ(γ).

�

3.6. A map of fundamental importance. The map

(24) Q → {Finite subsets of Q }
v 7→ π(Ψ(v))

will play central role in this paper. For a graphic illustration of this map for
the operator L given by (14), we refer to Figure 2.

Let us briefly explain how this map naturally arises when we seek to under-
stand the support of the Hahn series solutions of Mahler equations. Consider
f =

∑
γ∈Q fγz

γ ∈ H such that L(f) = 0. To simplify the presentation, we
assume that supp f has at least two elements and we ask: what are the possi-
ble values for the two least elements γ0 < γ1 of supp f? We have γ0 = val f ,
γ1 = val f|Q>γ0 and

f = f|Q>γ1 + fγ1z
γ1 + fγ0z

γ0 .

What are the possible values for γ0? Lemma 12 provides an immediate
answer to this question: γ0 ∈ −S(L).

What are the possible values for γ1? In order to answer this question,
note that the equations L(f) = 0 and f = f|Q>γ0 +fγ0z

γ0 imply L(f|Q>γ0 ) =

−fγ0L(zγ0). Lemma 12 ensures that γ1 = val f|Q>γ0 ∈ {π(valL(zγ0))} ∪
−S(L). But, it follows from Lemma 14 that suppL(zγ0) ⊂ Ψ(γ0). So, γ1 ∈
π(Ψ(γ0)) ∪−S(L). Since γ0 ∈ −S(L) and since −S(L) ⊂

⋃
v∈−S(L) π(Ψ(v))

as a consequence of the first assertion of Lemma 15 below, we get

γ1 ∈
⋃

v∈−S(L)

π(Ψ(v)).

We see the map (24) naturally appear here. Iterating this in order to reach
more and more elements of the support of f , we can guess that the map (24)
and its iterates should play a central role in the study of the support of the
Hahn series solution of (10). We will see in section 4 and, more precisely, in
Theorem 17 that this is indeed the case.

Note the following result for further use.

Lemma 15. For all v ∈ Q, we have

v ∈ π(Ψ(v))
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and

(25) minπ(Ψ(v)) = π(min Ψ(v)) = π(ψ(v)) = v.

Proof. In order to prove the lemma, it is sufficient to prove (25). The first
equality in (25) follows from the fact that π is increasing by Lemma 7. The
second equality in (25) follows from the definition of ψ. The third equality
in (25) follows form the fact that π and ψ are inverse of each other by
Lemma 7. �

4. A receptacle V for the support of the solutions

Throughout this section, we consider a Mahler operator

(26) L = anφ
n
` + an−1φ

n−1
` + · · ·+ a0

with coefficients a0, . . . , an ∈ K[z] such that a0an 6= 0. We let

Sol(L,H ) = {f ∈H | L(f) = 0}

be the K-vector space of solutions of L in H . In what follows, we will use
the following terminology:

Definition 16. We say that a subset Q of Q is computable if there exists
an algorithm which takes a rational number q as input and returns whether
it belongs to Q or not.

The aim of this section is to describe a computable well-ordered subset V
of Q containing the support of any Hahn series solution of L, i.e., such that

(27) Sol(L,H ) ⊂H|V

(and satisfying a technical but important stability condition with respect to
the map (24)).

Theorem 17. Let (Vi)i≥0 be the sequence of finite subsets of Q defined as
follows:

• V0 = −S(L);
• ∀i ≥ 0, Vi+1 =

⋃
v∈Vi π(Ψ(v)).

The sequence (Vi)i≥0 is nondecreasing and the set V =
⋃
i≥0 Vi has the fol-

lowing properties:
(1) Sol(L,H ) ⊂H|V ;
(2) V is well-ordered;
(3) V is computable;
(4) −S(L) ⊂ V;
(5)

⋃
v∈V π(Ψ(v)) = V.

Property (4) is obvious and Property (5) follows immediately from Lemma
15 and the construction of V. They will be freely used in the proofs of the
other assertions of Theorem 17 given in the next subsections. The fact that
(Vi)i≥0 is nondecreasing is proved in section 4.1. Section 4.2 gives a couple
of basic properties of V that will be used for the proofs of properties (1), (2)
and (3) of Theorem 17 but also latter in the paper. Properties (1), (2) and
(3) of Theorem 17 are proved in sections 4.3, 4.4 and 4.5 respectively.
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Remark 18. The existence of a subset V of Q satisfying properties (1) and
(2) is obvious: the support of any element of Sol(L,H ) is included in the
union of the supports of the elements of an arbitrary basis of Sol(L,H )
(which is a finite dimensional sub-K-vector space of H with dimension at
most n). But, this is not sufficient for our purpose, all the properties listed
in Theorem 17 will be used. In particular:

• property (3) is of fundamental importance for the algorithmic consid-
erations of this paper; it is one of the crucial ingredients that makes
our answer to Question 1, given by Theorem 62, possible;
• property (4) is a precaution to ensure that property (1) is satisfied;
• property (5) is essential in section 6 to build the set R mentioned in
the introduction.

Example 19. The sets V0,V1,V2 are computed in section 9.3 for the oper-
ator L given by (14).

In what follows, we will use the following notations:
• we continue with the notations µ1, . . . , µK , αk, βk, etc, from section 3;
• we let d ∈ Z≥1 be a common multiple of the denominators of the
slopes µ1, . . . , µK ;
• for any subset Q of Q and any γ ∈ Q, we set Q>γ = Q ∩ Q>γ ,
Q≥γ = Q∩Q≥γ , Q<γ = Q∩Q<γ and Q≤γ = Q∩Q≤γ .

4.1. Proof of the fact that (Vi)i≥0 is nondecreasing in Theorem 17.
Consider i ∈ Z≥0 and v ∈ Vi. Lemma 15 ensures that v ∈ π(Ψ(v)). But,
π(Ψ(v)) ⊂ π(

⋃
w∈Vi Ψ(w)) = Vi+1. So, v ∈ Vi+1. This shows that Vi ⊂ Vi+1.

4.2. Basic properties of V.

Lemma 20. The set V has a minimal element given by minV = minV0 =
min−S(L) = −µK .

Proof. We claim that, for all i ∈ Z≥0,

(28) minVi+1 = minVi.
Indeed, for all i ∈ Z≥0, we have Vi+1 = π(

⋃
v∈Vi Ψ(v)) =

⋃
v∈Vi π(Ψ(v)).

But, Lemma 15 ensures that, for all v ∈ Q, minπ(Ψ(v)) = v. So,

minVi+1 = min
⋃
v∈Vi

π(Ψ(v)) = min
v∈Vi

minπ(Ψ(v)) = min
v∈Vi

v = minVi,

whence our claim. Now, the equality minV = minV0 follows clearly from the
fact that V =

⋃
i≥0 Vi and from (28). The equality minV0 = min−S(L) fol-

lows from the fact that V0 = −S(L) by definition. The equality min−S(L) =
−µK follows from the fact that µK is the greatest slope of L. �

Lemma 21. Consider v ∈ V. Let M be the least element of Z≥0 such that
v ∈ VM . There exist v0 < · · · < vM−1 < vM = v in V such that

• v0 ∈ −S(L);
• vi+1 ∈ π (Ψ(vi)) for any i ∈ {0, . . . ,M − 1}.

Proof. The case M = 0 being obvious, we will assume in the remainder of
this proof that M ≥ 1. It follows immediately from the definition of the Vi
that there exist v0, . . . , vM−1, vM = v in V such that
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• v0 ∈ −S(L);
• vi+1 ∈ π(Ψ(vi)) for any i ∈ {0, . . . ,M − 1}.

Lemma 15 guarantees that, for all i ∈ {0, . . . ,M − 1}, minπ(Ψ(vi)) = vi, so
vi+1 ≥ vi. Therefore, we have v0 ≤ · · · ≤ vM . If one these inequalities were
an equality, then vM would belong to VM−1 and this would contradict the
minimality of M . Thus, v0 < · · · < vM . This concludes the proof. �

4.3. Proof of (1) of Theorem 17. Consider f ∈ Sol(L,H ). We want to
prove that supp f ⊂ V. Assume on the contrary that supp f 6⊂ V. Then, the
set supp(f)\V is nonempty and well-ordered. In particular, we can consider

γmin = min (supp(f) \ V) .

By minimality of γmin, we have

(29) supp f|Q<γmin
⊂ V.

Consider the decomposition

f = f|Q<γmin
+ f|Q≥γmin

.

The equality L(f) = 0 implies the equality L(f|Q≥γmin
) = −L(f|Q<γmin

) and
we infer from Lemma 12 that

(30) γmin = val f|Q≥γmin
∈ {π(valL(f|Q<γmin

))} ∪ −S(L).

Since γmin ∈ supp(f) \ V and −S(L) ⊂ V, we have γmin /∈ −S(L) so (30)
gives

(31) γmin = π(valL(f|Q<γmin
)).

In particular, this implies that L(f|Q<γmin
) 6= 0. Lemma 14 ensures that

(32) valL(f|Q<γmin
) ∈ suppL(f|Q<γmin

) ⊂
⋃

γ∈supp f|Q<γmin

Ψ(γ).

Combining (31) and (32), we get

(33) γmin ∈ π

 ⋃
γ∈supp f|Q<γmin

Ψ(γ)

 .

The right-hand side of (33) is included in π(
⋃
γ∈V Ψ(γ)) by (29) and the

latter set is equal to V by property (5) of Theorem 17. So, γmin ∈ V. This
is a contradiction.

4.4. Proof of (2) of Theorem 17. We argue by contradiction: we assume
that V is not well-ordered. Thus, the setD made up of the infinite decreasing
sequences with values in V is nonempty. Lemma 20 ensures that V ⊂ Q≥−µK .
Therefore, any element of D has a limit in R≥−µK . We let E ⊂ R≥−µK be
the (nonempty) set made of these limits. We set w = inf E ∈ R≥−µK . It
is easily seen that w ∈ E. We let (wm)m≥0 be an arbitrary element of D
tending to w.

Note that, for all m ≥ 0, wm > wm+1 ≥ w, so wm > w. Consider
k ∈ {1, . . . ,K} such that −µk ≤ w < −µk−1 with the convention µ0 = −∞.
Since (wm)m≥0 is decreasing and tends to w, up to replacing (wm)m ≥0

by (wm+M )m≥0 with M ∈ Z≥0 large enough, we can assume that, for all
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m ≥ 0, −µk < wm < −µk−1, where the first inequality is legitimate because
wm > w ≥ −µk.

Lemma 21 ensures that, for any M ≥ 0, there exist rM ∈ Z≥0 and vM,0 <
· · · < vM,rM = wM in V such that

• vM,0 ∈ −S(L);
• vM,i+1 ∈ π (Ψ(vM,i)) for any i ∈ {0, . . . , rM − 1}.

For any M ≥ 0, we have vM,rM = wM > w, so one can consider the least
element r′M of {0, . . . , rM} such that vM,r′M

> w. It is important to notice
that r′M ≥ 1 for all M ≥ 0, because −µk ≤ w < vM,r′M

≤ wM < −µk−1,
so vM,r′M

6∈ −S(L) and, in particular, vM,r′M
6= vM,0. The inequality wM ≥

vM,r′M
> w and the fact that (wm)m≥0 tends to w show that (vM,r′M

)M≥0

tends to w and that, up to extracting a subsequence, we can assume that
(vM,r′M

)M≥0 is decreasing.
We set qM = ψ(vM,r′M

), so that qM ∈ Ψ(vM,r′M
) is such that vM,r′M

=

π(qM ) by Lemma 7. As −µk ≤ w < vM,r′M
= π(qM ) ≤ wM < −µk−1, it

follows from Lemma 10 that, for all M ≥ 0,

(34) vM,r′M
= π(qM ) =

qM − βk−1

`αk−1

where (`αk−1 , βk−1) ∈ P(L) is the left endpoint of the edge of N (L) with
slope µk. Moreover, since, for all M ≥ 0, vM,r′M

∈ π(Ψ(vM,r′M−1)) and since
ψ and π are inverse of each other by Lemma 7, we have qM = ψ(vM,r′M

) ∈
ψ(π(Ψ(vM,r′M−1))) = Ψ(vM,r′M−1) and, hence, there exists (`iM , jM ) ∈ P(L)
such that

(35) qM = `iM vM,r′M−1 + jM .

Since P(L) is finite, up to extracting a subsequence, we can assume that
iM = α and jM = β do not depend on M ≥ 0. Combining (34) and (35),
we obtain, for all M ≥ 0,

vM,r′M
=
`αvM,r′M−1 + β − βk−1

`αk−1

and, hence,

vM,r′M−1 =
`αk−1vM,r′M

+ βk−1 − β
`α

.

The latter equality can be rewritten as vM,r′M−1 = δ(vM,r′M
) where δ : R→ R

is the increasing affine function defined by δ(x) =
`αk−1x+βk−1−β

`α . Since
(vM,r′M

)M≥0 is decreasing, this implies that (vM,r′M−1)M≥0 is decreasing as
well and, hence, belongs to D. Let w′ be the limit of (vM,r′M−1)M≥0. Since
(vM,r′M−1)M≥0 is decreasing and satisfies, for all M ≥ 0, vM,r′M−1 ≤ w, we
have w′ < w. This contradicts the minimality of w and concludes the proof
of (2) of Theorem 17.

4.5. Proof of (3) of Theorem 17. We set

Zd,` =
⋃

i∈Z≥0

1

d`i
Z ⊂ Q.
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Note that we do not require the integers d and ` to be coprime. We introduce
the following two maps that will play an important role in this section:

h : Zd,` → Z≥0

v 7→ h(v) = min
{
i ∈ Z≥0 | v ∈

1

d`i
Z
}

and

ε : Q → Q>0 ∪ {+∞}(36)
v 7→ ε(v) = minV>v − v

with the convention ε(v) = +∞ if V>v = ∅. The fact that ε is well-defined
and takes its values in Q>0 ∪ {+∞}, i.e., the fact that V>v has a minimal
element if it is not empty, follows from the fact that V is well-ordered.

4.5.1. Computability of V: description of an algorithm. Let us temporarily
admit the following result which will be proved in section 4.5.2.

Proposition 22. For any v ∈ Q, the following properties are equivalent:
(1) v ∈ V;
(2) v ∈ Zd,`, v ≥ −µK and v ∈ Vι(v) where

(37) ι(v) =

⌊
(n+ 1)

v + µK
τ

+ h(v)

⌋
with

(38) τ := min
{
ε(−µ1), . . . , ε(−µK), (d`n)−1

}
∈ Q>0.

The interest of this result lies in the fact that, while V is infinite, the set
Vι(v) is finite and can be easily computed (directly from its definition) once
ι(v) has been computed. Unfortunately, ι(v) is not easy to compute. More
precisely, while in formula (37) the values of n, µK and h(v) can be easily
computed, the value of τ cannot. This problem can be solved using section
5 below, where an algorithm for computing a positive lower bound τ̆ on τ is
provided. Whence an upper bound

ῐ(v) =

⌊
(n+ 1)

v + µK
τ̆

+ h(v)

⌋
on ι(v) for any v ∈ Zd,` such that v ≥ −µK . Now, since (Vi)i≥0 is nonde-
creasing, we have Vι(v) ⊂ Vῐ(v) and Proposition 22 implies that the following
properties are equivalent:

(1) v ∈ V;
(2) v ∈ Zd,`, v ≥ −µK and v ∈ Vῐ(v).

This leads to the following algorithm, which uses Algorithm 44 described
at the end of section 5 for computing a positive lower bound τ̆ on τ .

Algorithm 23.

Input: L a Mahler operator with coefficients in K[z], v ∈ Q.
Output: whether or not v is in V.

if v 6∈ Zd,` or v < −µK then
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return “v is not in V”
otherwise

compute n, µK and h(v)
compute a positive lower bound τ̆ on τ using Algorithm 44
compute ῐ =

⌊
(n+ 1)v+µK

τ̆ + h(v)
⌋

compute Vῐ
if v ∈ Vῐ then

return “v is in V”
otherwise

return “v is not in V”
end if

end if

4.5.2. Proof of Proposition 22. Proposition 22 is proved at the very end of
this section, after a series of lemmas.

Lemma 24. We have

(39) V ⊂ Zd,`.
Moreover, for any v ∈ Zd,` and w ∈ π(Ψ(v)), we have w ∈ Zd,` and
(40) h(v) ≤ h(w) + n.

Proof. Before proving (39), note that
• V0 ⊂ Zd,`;
• for any v ∈ Zd,`, π(Ψ(v)) ⊂ Zd,`.

Indeed, the first property holds because d is a common denominator of the
elements of V0 = −S(L). The second property holds because, by definition of
π and Ψ, for any v ∈ Zd,` and any w ∈ π(Ψ(v)), there exist (`i, j), (`i

′
, j′) ∈

P(L) such that

w =
`iv + j − j′

`i′
∈ 1

`i′
Zd,` = Zd,`.

Let us now prove (39). Since V = ∪i≥0Vi, it is equivalent to prove that, for
all i ∈ Z≥0, Vi ⊂ Zd,`. The latter property can be proved by induction on
i ∈ Z≥0. Indeed, the two properties noticed at the beginning of the proof
show that V0 ⊂ Zd,` and that if, for a given i ∈ Z≥0, we have Vi ⊂ Zd,`, then
we have Vi+1 =

⋃
v∈Vi π(Ψ(v)) ⊂ Zd,`.

Let us now prove (40). By definition of h(w), we have w ∈ 1
d`h(w)Z, so

v =
`i
′
w + j′ − j

`i
∈ 1

`i
1

d`h(w)
Z =

1

d`h(w)+i
Z.

Thus, we have h(v) ≤ h(w) + i ≤ h(w) + n and this proves (40).
�

Remark 25. Consider two multiplicatively independent integers `1, `2 ≥ 2.
In [AB17], Adamczewski and Bell give a proof of a conjecture of Loxton
and van der Poorten asserting that any Puiseux series solution of both a `1-
Mahler equation and of a `2-Mahler equation belongs to

⋃
d≥1 C(z1/d). As

mentioned in the Introduction, an alternative proof was given later by Shäfke
and Singer in [SS19]. The first part of Lemma 24 can be used to extend this
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result to Hahn series. Indeed, let f ∈ H be solution of both a `1-Mahler
equation and of a `2-Mahler equation with coefficients in C(z). Then, it
follows from Lemma 24 that supp f is included in Zd1,`1 and in Zd2,`2 for
some integers d1, d2 ≥ 1. But, Zd1,`1 ∩ Zd2,`2 ⊂ 1

dZ for some integer d ≥ 1
because `1 and `2 are multiplicatively independent. Thus, f is a Puiseux
series solution of both a `1-Mahler equation and a `2-Mahler equation and,
hence, f ∈

⋃
d≥1 C(z1/d).

Lemma 26. Let v ∈ Zd,` and w ∈ π(Ψ(v)) satisfy

(41) −µk + ε̆k ≤ v < w < −µk−1

for some k ∈ {1, . . . ,K} and some lower bound ε̆k > 0 on ε(−µk). Then, at
least one of the following properties holds:

• w ≥ v + ε̆k;
• w ≥ v + 1

d`n ;
• h(w) > h(v).

Proof. By definition of Ψ, there exists (`α, β) ∈ P(L) such that w = π(`αv+
β). Since −µk ≤ w = π(`αv + β) < −µk−1, Lemma 10 ensures that

(42) w = π(`αv + β) =
`αv + β − βk−1

`αk−1
.

We now distinguish the cases α = αk−1, α > αk−1 and α < αk−1.

Case α = αk−1. In this case, (42) can be rewritten as w = v +
β−βk−1

`αk−1 .
Since w > v, we have β − βk−1 > 0. Since β and βk−1 belong to Z, we have
β − βk−1 ≥ 1. It follows that

w ≥ v +
1

`αk−1
≥ v +

1

`n
≥ v +

1

d`n

and the lemma holds in this case.

Case α > αk−1. In this case, since (`αk−1 , βk−1) is the left endpoint of the
edge of N (L) of slope µk, the slope of the vector joining (`αk−1 , βk−1) to
(`α, β) is greater than or equal to µk, that is,

β − βk−1

`α − `αk−1
≥ µk.

So, we have

w − v =
(`α − `αk−1)v + β − βk−1

`αk−1
≥ (`α − `αk−1)v + (`α − `αk−1)µk

`αk−1

=
(`α − `αk−1)(v + µk)

`αk−1
≥ (`α − `αk−1)ε̆k

`αk−1
≥ ε̆k

and the lemma holds in this case.

Case α < αk−1. Write v = M
d`h(v)

with M ∈ Z. Equation (42) can be
rewritten as

(43) w =
M

d`h(v)+αk−1−α
+
β − βk−1

`αk−1
.

We now distinguish two cases:
• if h(v)−α > 0, then equation (43) shows that h(w) = h(v) +αk−1−
α > h(v) and the lemma holds;
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• if h(v) ≤ α, then equation (43) shows that h(w) ≤ αk−1; so v and w
both belong to 1

d`αk−1 Z; it follows that w− v is a positive element of
1

d`αk−1 Z, so w − v ≥ 1
d`αk−1 ≥ 1

d`n and the lemma holds.
�

Lemma 27. Consider k ∈ {1, . . . ,K} and let ε̆k > 0 be a lower bound on
ε(−µk). Consider M ∈ Z≥0 and v0, . . . , vM ∈ Zd,` such that

• ∀i ∈ {0, . . . ,M − 1}, vi+1 ∈ π(Ψ(vi));
• −µk + ε̆k ≤ v0 < · · · < vM−1 < vM < −µk−1.

Then, we have

M < (n+ 1)
vM + µk

min {ε̆k, (d`n)−1}
+ h(vM ).

Proof. Set
mk = min

{
ε̆k, (d`

n)−1
}
.

Consider

(44) E1 = {i ∈ {0, . . . ,M − 1} | h(vi) ≥ h(vi+1)}

and

(45) E2 = {i ∈ {0, . . . ,M − 1} | h(vi) < h(vi+1)}.

SetM1 = ]E1 andM2 = ]E2. Since {E1, E2} is a partition of {0, . . . ,M−1},
we have

M = M1 +M2.

We have :
• ∀i ∈ {0, . . . ,M − 1}, h(vi) ≤ h(vi+1) + n by Lemma 24;
• if i ∈ E2, then h(vi) < h(vi+1) and, hence, h(vi) ≤ h(vi+1) − 1
because h(vi) and h(vi+1) are integers.

It follows that
h(v0) ≤ h(vM ) + nM1 −M2.

Since h(v0) ≥ 0, we get

(46) M2 ≤ h(vM ) + nM1.

We shall now give an upper bound onM1. On the one hand, since −µk+ε̆k ≤
v0 < · · · < vM−1 < vM , we have

(47)
∑
i∈E1

vi+1 − vi ≤
M−1∑
i=0

vi+1 − vi = vM − v0 ≤ vM + µk − ε̆k < vM + µk.

On the other hand, for any i ∈ E1, we have h(vi) ≥ h(vi+1). Since −µk+ε̆k <
vi < vi+1 < −µk−1, Lemma 26 ensures that vi ≤ vi+1 −mk. It follows that

(48)
∑
i∈E1

vi+1 − vi ≥
∑
i∈E1

mk = M1mk.

Combining (47) and (48), we get

(49) M1 <
vM + µk
mk

.
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Finally, combining (46) and (49), we obtain

M = M1 +M2 ≤ h(vM ) + (n+ 1)M1 < h(vM ) + (n+ 1)
vM + µk
mk

.

�

Lemma 28. Consider M ∈ Z≥0 and v0, . . . , vM ∈ V such that
• v0 < · · · < vM−1 < vM ;
• ∀i ∈ {0, . . . ,M − 1}, vi+1 ∈ π(Ψ(vi)).

Then,

M ≤ (n+ 1)
vM + µK

τ
+ h(vM )

where
τ = min

{
ε(−µ1), . . . , ε(−µK), (d`n)−1

}
> 0.

Proof. As in the proof of Lemma 27, we consider the sets E1 and E2 defined
by formulas (44) and (45) respectively, we set M1 = ]E1 and M2 = ]E2 and
we have

M = M1 +M2

and
M2 ≤ h(vM ) + nM1.

As in the proof of Lemma 27, we shall now give an upper bound on M1.
We first claim that, for all i ∈ E1, we have

(50) vi ≤ vi+1 − τ.

In order to prove this claim, let us first recall that V ⊂ Q≥−µK by Lemma
20, so one of the following cases is satisfied.

Case 1: there exists k ∈ {1, . . . ,K} such that −µk ≤ vi < vi+1 < −µk−1.
We distinguish the following two subcases.

Subcase 1.1: −µk + τ ≤ vi. Since i ∈ E1, we have h(vi) ≥ h(vi+1).
Moreover, we have −µk + τ ≤ vi < vi+1 < −µk−1 by hypothesis. So, Lemma
26 ensures that vi ≤ vi+1 − τ as claimed.

Subcase 1.2: vi < −µk + τ . In this case, since vi ∈ V, the definition of
ε(−µk) ensures that vi = −µk. Since vi+1 ∈ V, we have vi = −µk ≤ vi+1− τ
as claimed.

Case 2: there exists k ∈ {1, . . . ,K − 1} such that vi < −µk ≤ vi+1. We
distinguish the following two subcases.

Subcase 2.1: vi+1 = −µk. In this case, we have vi+1 ∈ 1
dZ, so h(vi+1) = 0.

Lemma 24 implies h(vi) ≤ n, i.e., vi ∈ 1
d`nZ. Therefore, vi and vi+1 are

elements of 1
d`nZ such that vi < vi+1, so we have vi ≤ vi+1 − 1

d`n ≤ vi+1 − τ
as claimed.

Subcase 2.2: vi+1 > −µk. Since vi+1 ∈ V, the definition of ε(−µk) ensures
that vi+1 ≥ −µk + τ . But, by hypothesis, −µk > vi. So, vi+1 > vi + τ and
our claim is proved in this case as well.
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Now that the inequality (50) is justified, we can argue as we did in Lemma
27 for proving (49) in order to prove that

M1 ≤
vM + µK

τ
.

Finally, we obtain

M = M1 +M2 ≤ h(vM ) + (n+ 1)M1 ≤ h(vM ) + (n+ 1)
vM + µK

τ
.

�

Proof of Proposition 22. Let us prove that (1) implies (2) in Proposition 22.
Consider v ∈ V. Lemma 24 ensures that v ∈ Zd,`. Lemma 20 ensures that
v ≥ −µK . It remains to prove that v ∈ Vι(v). Let M be the least positive
integer such that v ∈ VM . Lemma 21 ensures that there exist v0 < · · · < vM
in V such that

• v0 ∈ V0 = −S(L);
• vi+1 ∈ π(Ψ(vi)) for any i ∈ {0, . . . ,M − 1};
• vM = v.

It follows from Lemma 28 that M ≤ ι(v). Since (Vi)i≥0 is nondecreasing by
Theorem 17, we have v ∈ VM ⊂ Vι(v). This proves that (1) implies (2) in
Proposition 22. The converse implication is obvious. �

5. An algorithm for computing a positive lower bound on ε(v)

We retain the notations from the previous section. In addition, we set
µ0 = −∞.

5.1. Structure of the algorithm. The aim of this section is to present
an algorithm for computing a positive lower bound on ε(v) for any given
v ∈ Zd,`. This algorithm is recursive and its structure is as follows.

• The base case corresponds to the case when v belongs to ]−∞,−µK ]∩
Zd,`. This case presents no difficulty because ε(v) can be computed
explicitly as we will see in Proposition 29.
• The recursive step is organized as follows. We consider an element v
of ]− µK ,+∞[∩Zd,` and we distinguish two cases:

- if v 6∈ {−µK−1, . . . ,−µ1}, then there exists k ∈ {1, . . . ,K} such
that v ∈]−µk,−µk−1[∩Zd,` and we will see in Proposition 35 how
to compute a positive lower bound on ε(v) from positive lower
bounds on ε(w) for finitely many explicit w ∈]−∞,−µk]∩Zd,`;

- if v = −µk−1 for some k ∈ {2, . . . ,K}, then we will see in
Proposition 38 how to compute a positive lower bound on ε(v) =
ε(−µk−1) from positive lower bounds on ε(w) for finitely many
explicit w ∈]−∞,−µk−1[∩Zd,`.

The algorithm is presented in pseudo-code form in Algorithm 41 in sec-
tion 5.5. The theoretical results mentioned above, namely Proposition 29,
Proposition 35 and Proposition 38, on which the algorithm is based, are the
subject of the next three sections.
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5.2. Theoretical result for the base case. The following result allows us
to compute a lower bound on ε(v) for any given v ∈]−∞,−µK ] ∩ Zd,`.

Proposition 29. We have:

• for any v ∈]−∞,−µK [∩Zd,`, ε(v) = −µK − v > 0;
• ε(−µK) = min(V1 \ {−µK}) + µK .

Therefore, a lower bound on ε(v) is given by

• −µK − v if v ∈]−∞,−µK [∩Zd,`;
• min(V1 \ {−µK}) + µK if V1 \ {−µK} 6= ∅ and 1 otherwise5, if v =
−µK .

Example 30. In Section 9, we will illustrate our algorithm for computing a
positive lower bound on ε(v), namely Algorithm 41 presented in section 5.5
below, on the operator defined by (14). We will have to compute positive
lower bounds on ε(−3

4) and ε(−1
2). Let us explain how this can be done

using Proposition 29. We will see in section 9.1 that K = 2, µ1 = 0 and
µ2 = 1

2 . Since −
3
4 < −µ2, Proposition 29 ensures that

ε(−3

4
) = −µ2 − (−3

4
) = −1

2
+

3

4
=

1

4
.

Moreover, we will see in section 9.3 that V1 =
{
−1

2 ,−
1
4 , 0, 1

}
, so V1\{−µ2} ={

−1
4 , 0, 1

}
6= ∅ and Proposition 29 ensures that

ε(−1

2
) = ε(−µ2) = min(V1 \ {−µ2}) + µ2 = −1

4
+

1

2
=

1

4
.

Proof of Proposition 29. Lemma 20 ensures that minV = −µK . Therefore,

• for all v ∈]−∞,−µK [∩Zd,`, we have ε(v) = minV>v−v = −µK−v >
0;
• ε(−µK) = minV>−µK +µK = min(V \{−µK})+µK and the desired
equality ε(−µK) = min(V1 \ {−µK}) + µK follows from Lemma 31
below.

�

Lemma 31. We have minV \ {−µK} = minV1 \ {−µK}.

Proof. We set w = minV\{−µK}. If V\{−µK} = ∅, then V1\{−µK} = ∅ as
well and the equality w = minV1 \ {−µK} holds in this case. From now on,
we assume that V \{−µK} 6= ∅. In order to prove the lemma, it is sufficient
to prove that w ∈ V1. Let M be the least element of Z≥0 such that w ∈ VM .
If M = 0, then w ∈ V0 ⊂ V1 and the lemma is proved in this case. Suppose
now that M ≥ 1. We want to prove that M = 1. According to Lemma 21,
there exist v0, v1, . . . , vM ∈ V such that v0 ∈ −S(L), v0 < v1 < · · · < vM
and vM = w. Since min−S(L) = −µK and v0 ∈ −S(L), the fact that
v1 > v0 implies that v1 > −µK and, hence, v1 ∈ V \ {−µK}. It follows that
v1 ≥ minV \ {−µK} = w = vM and, hence, M = 1. �

5Here, 1 is an arbitrary choice, any positive value would work.
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5.3. Theoretical results for the recursive step: case v 6∈ {−µK−1, . . . ,−µ1}.
In this section, we consider k ∈ {1, . . . ,K} and we assume that we are able to
compute a positive lower bound ε̆(w) on ε(w) for any w ∈]−∞,−µk]∩Zd,`.
Our aim is to explain how one can compute, for any v ∈]−µk,−µk−1[∩Zd,`,
a positive lower bound on ε(v) by using finitely many of the values ε̆(w),
with w ∈]−∞,−µk] ∩ Zd,`.

Our approach, detailed in Proposition 35 below, relies on a labeled rooted
tree T (k, ε̆(−µk), v) that we shall now introduce. Its definition involves the
finite (possibly empty) sets defined, for any w ∈ Zd,`, by

∆(w) =

{
ψ(w)− β

`α
| (`α, β) ∈ P(L)

}
\ {w},

In geometric terms, ∆(w) is the set of w′ ∈ Q \ {w} for which there exists a
point in P(L) whose projection along a line of slope −w′ onto the y-axis is
the point with coordinates (0, ψ(w)). It will also be useful to keep in mind
that, in more computational terms, ∆(w) is the set of w′ ∈ Q \ {w} such
that ψ(w) ∈ Ψ(w′) and that, according to the discussion at the beginning of
section 3.4, Ψ(w′) is a natural receptacle for suppL(zw

′
).

Definition 32. Let k ∈ {1, . . . ,K} and v ∈] − µk,−µk−1[∩Zd,`. The la-
beled rooted tree T (k, ε̆(−µk), v) alluded to above is uniquely defined by the
following properties:

• the labels of T (k, ε̆(−µk), v) belong to Q;
• the label of the root of T (k, ε̆(−µk), v) is v;
• if a vertex has label w < −µk + ε̆(−µk), then it has no child, i.e., it
is a leaf;
• if a vertex has label w ≥ −µk + ε̆(−µk), then it has ]∆(w) children
labeled by the elements of ∆(w).

Note that:
• In the last case of Definition 32, since w > −µK , it follows from
Lemma 33 below that ∆(w) 6= ∅ and, hence, the vertex is not a leaf.
• In the tree T (k, ε̆(−µk), v), children have smaller labels than their
parent; this is a direct consequence (of the first assertion) of Lemma
34 below.

The following two lemmas give useful properties of the set ∆(w).

Lemma 33. If the set ∆(w) is empty for some w ∈ Zd,`, then K = 1 and
w = −µK = −µ1.

Proof. The following properties are obviously equivalent:
• ∆(w) is empty;
• for all (`α, β) ∈ P(L), ψ(w)−β

`α = w;
• for all (`α, β) ∈ P(L), ψ(w) = `αw + β;
• Ψ(w) = {ψ(w)};
• Ψ(w) is a singleton.

Since Ψ(w) is the set of ordinates of the projection of the elements of P(L)
along a line of slope −w onto the y-axis, the fact that Ψ(w) is a singleton
is equivalent to the fact that the elements of P(L) belong to a single line of
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slope −w. In that case, N (L) has a single slope and this slope is equal to
−w, i.e., K = 1 and w = −µK = −µ1. �

Lemma 34. Let w,w′ ∈ Zd,`. If w′ ∈ ∆(w), then w′ < w and w ∈ π(Ψ(w′)).
Reciprocally6, if w ∈ π(Ψ(w′)) and w 6= w′, then w′ ∈ ∆(w) and w′ < w.

Proof. Consider w′ ∈ ∆(w). There exists (`α, β) ∈ P(L) such that

w′ =
ψ(w)− β

`α
.

Thus, we have ψ(w) = `αw′+β and, hence, since π and ψ are inverse of each
other by Lemma 7, we have w = π(`αw′ + β) ∈ π(Ψ(w′)). Then, it follows
from Lemma 15 that w′ ≤ w. Since w′ 6= w, we have w′ < w.

Suppose now that w ∈ π(Ψ(w′)) and w 6= w′. Then, w = π(`αw′ + β)
for some (`α, β) ∈ P(L). Since π and ψ are inverse of each other by Lemma
7, we have ψ(w) = `αw′ + β and, hence, w′ = ψ(w)−β

`α . Since w′ 6= w, we
get w′ ∈ ∆(w). The fact that w′ < w follows from the first part of the
lemma. �

As announced above, the following result shows how to compute, for any
v ∈] − µk,−µk−1[∩Zd,`, a positive lower bound on ε(v) by using finitely
many ε̆(w) with w ∈] −∞,−µk] ∩ Zd,`. Our approach relies on the labeled
rooted tree ε(T (k, ε̆(−µk), v)) obtained from T (k, ε̆(−µk), v) by applying ε
to its labels. It will be used in the following way: we will explain how to
compute a positive lower bound on the label of any leaf of ε(T (k, ε̆(−µk), v))
and how to compute a positive lower bound on the label of any vertex of
ε(T (k, ε̆(−µk), v)) from positive lower bounds on its children; this will en-
able us to compute a positive lower bound on the label of any vertex of
ε(T (k, ε̆(−µk), v)) and, in particular, on the label of its root, which is noth-
ing but ε(v).

Proposition 35. Let k ∈ {1, . . . ,K} and v ∈]− µk,−µk−1[∩Zd,`.
(i) The tree T (k, ε̆(−µk), v) is finite and its height is less than or equal to

(51) (n+ 1)
v + µk

min {ε̆(−µk), (d`n)−1}
+ h(v) + 1.

(ii) Consider a leaf of T (k, ε̆(−µk), v) with label w. Then a positive lower
bound on ε(w) is given by ε̆(w) if w < −µk and by −µk + ε̆(−µk) − w if
−µk ≤ w < −µk + ε̆(−µk).
(iii) Consider a vertex of T (k, ε̆(−µk), v) with label w which is not a leaf. If,
for each w′ ∈ ∆(w), we have a positive lower bound mw′ on ε(w′), then a
positive lower bound on ε(w) is given by the minimum of

(52) {mw′`
dw,w′−αk−1 | w′ ∈ ∆(w)}∪{−µk−1−w,min(π(Ψ(w))\{w})−w}

where dw,w′ is defined by (54).
Consequently:

6Strictly speaking, the reciprocal assertion should start with the hypothesis “w′ < w and
w ∈ π(Ψ(w′))” instead of the seemingly weaker hypothesis “w′ 6= w and w ∈ π(Ψ(w′))”.
Actually, these hypotheses are equivalent because minπ(Ψ(w′)) = w′ according to
Lemma 15.



HAHN SERIES AND MAHLER EQUATIONS: ALGORITHMIC ASPECTS 27
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• (i) above ensures that ε(T (k, ε̆(−µk), v)) is a finite tree and gives an
explicit upper bound on its height;
• (ii) above allows us to compute a positive lower bound on the label of
any leaf of ε(T (k, ε̆(−µk), v));
• (iii) above allows us to compute a positive lower bound on the label of
a vertex of ε(T (k, ε̆(−µk), v)) which is not a leaf from positive lower
bounds on its children.

This allows us to compute a positive lower bound on the label of any vertex
of ε(T (k, ε̆(−µk), v)) and, in particular, a positive lower bound on the label
of its root, namely ε(v).

Example 36. In section 9, we will have to compute a positive lower bound
on ε(−1

4) for the operator defined by (14). Let us explain how this can be
done using Proposition 35. We will see in section 9.1 that K = 2, µ1 = 0 and
µ2 = 1

2 . Moreover, we have seen in Example 30 that ε(−µ2) = ε(−1
2) = 1

4 ,
thus ε̆(−µ2) = ε̆(−1

2) := 1
4 is a positive lower bound on ε(−µ2) = ε(−1

2).
We have −1

4 ∈] − µ2,−µ1[=] − 1
2 , 0[, so, following the method presented

in Proposition 35, in order to compute a positive lower bound on ε(−1
4), we

first compute the tree T (2, ε̆(−µ2),−1
4) = T (2, 1

4 ,−
1
4). The result is shown

in Figure 1.
We then compute lower bounds on the labels ε(−1

2), ε(−3
4) and ε(−3

8) of
the leaves of ε(T (2, 1

4 ,−
1
4)). Since −3

8 ≥ −µ2 = −1
2 , it follows from (ii) of

Proposition 35 that a positive lower bound on ε(−3
8) is given by

m− 3
8

= −µ2 + ε̆(−µ2)− (−3

8
) = −1

2
+

1

4
+

3

8
=

1

8
.

Similarly, since −1
2 ≥ −µ2 = −1

2 , it follows from (ii) of Proposition 35 that
a positive lower bound on ε(−1

2) is given by

m− 1
2

= −µ2 + ε̆(−µ2)− (−1

2
) = −1

2
+

1

4
+

1

2
=

1

4
.

Last, −3
4 < −µ2 = −1

2 , and it has been shown in Example 30 that m− 3
4

= 1
4

is a positive lower bound on ε(−3
4) respectively.

Now that we have lower bounds on the labels of the leaves of ε(T (2, 1
4 ,−

1
4)),

(ii) of Proposition 35 ensures that a positive lower bound on the root ε(−1
4)

of ε(T (2, 1
4 ,−

1
4)) is given by the minimum of (52) with w = −1

4 and k = 2.
Computing this minimum requires the calculation of α1, of d− 1

4
,w′ for w

′ ∈
{−1

2 ,−
3
4 ,−

3
8} and of min(π(Ψ(−1

4)) \ {−1
4}). This presents no difficulty.

Indeed, we will see in section 9.1 that α1 = 1. Moreover, using the explicit
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formulas for P(L) and π given in Section 9.1 and Section 9.2, we get

d− 1
4
,− 1

2
= min

{
α ∈ {0, 1, 2} | ∃(`α, β) ∈ {(1, 0), (2, 0), (2, 1), (4, 1)},

− 1

2
=
ψ(−1

4)− β
2α

=
−1

2 − β
2α

}
= 0.

Similar calculations show that

d− 1
4
,− 3

4
= 1, d− 1

4
,− 3

8
= 2.

Last, the explicit formulas for π and Ψ given in section 9.2 show that

min(π(Ψ(−1

4
)) \ {−1

4
}) = −1

8
.

Finally, we obtain that a positive lower bound of ε(−1
4) is given by the

minimum of the following numbers:

• mw′`
d− 1

4 ,w
′−α1

= 1
4 × 20−1 = 1

8 for w′ = −1
2 ;

• mw′`
d− 1

4 ,w
′−α1

= 1
4 × 21−1 = 1

4 for w′ = −3
4 ;

• mw′`
d− 1

4 ,w
′−α1

= 1
8 × 22−1 = 1

4 for w′ = −3
8 ;

• 0−
(
−1

4

)
= 1

4 ;
• min(π(Ψ(−1

4)) \ {−1
4}) + 1

4 = −1
8 + 1

4 = 1
8 ;

this minimum is equal to 1
8 . Thus, a positive lower bound of ε(−1

4) is given
by ε̆(−1

4) = 1
8 .

The proof of Proposition 35 is given below, after the following lemma.

Lemma 37. Let w ∈ Q>−µK and let k ∈ {1, . . . ,K} be such that −µk ≤
w < −µk−1, with the convention µ0 = −∞. Then, a positive lower bound on
ε(w) is the minimum of the following set

(53) {ε(w′)`dw,w′−αk−1 | w′ ∈ ∆(w)}∪{−µk−1−w,min(π(Ψ(w))\{w})−w}
where

(54) dw,w′ = min

{
α ∈ {0, . . . , n} | ∃(`α, β) ∈ P(L), w′ =

ψ(w)− β
`α

}
.

Proof. Let w+ = minV>w so that ε(w) = w+ − w. Since −µk−1 ∈ V>w ∪
{+∞}, we have −µk−1 ≥ w+. Thus:

−µk ≤ w < w+ ≤ −µk−1.

We shall now distinguish several cases.

Case 1: w+ = −µk−1. In this case, ε(w) = w+ − w = −µk−1 − w and this
quantity is bounded from below by the minimum of (53).

Case 2: w+ < −µk−1. In this case, we have −µk < w+ < −µk−1 and,
hence, w+ /∈ V0 = −S(L). It follows from Lemma 21 that there exists
w− ∈ V such that

(55) w− < w+ and w+ ∈ π(Ψ(w−)).

Since w+ = minV>w, the facts that w− ∈ V and that w− < w+ ensures that
w− ≤ w. We now distinguish two subcases.
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Subcase 2.1: w+ < −µk−1 and w− = w. In this case, since w+ ∈
π(Ψ(w−)) by (55), we have

ε(w) = w+ − w ≥ min(π(Ψ(w−)) \ {w−})− w = min(π(Ψ(w)) \ {w})− w
and this quantity is bounded from below by the minimum of (53).

Subcase 2.2: w+ < −µk−1 and w− < w. Since −µk ≤ w < w+ < −µk−1,
Lemma 8 ensures that

(56) w+ =
ψ(w+)− βk−1

`αk−1
and w =

ψ(w)− βk−1

`αk−1
.

Furthermore, since w+ ∈ π(Ψ(w−)) by (55) and since π and ψ are inverse of
each other by Lemma 7, we have ψ(w+) ∈ Ψ(w−) and, hence, there exists
(`α, β) ∈ P(L) such that ψ(w+) = `αw− + β. Therefore, we have

(57) w− =
ψ(w+)− β

`α
=
`αk−1w+ + βk−1 − β

`α
.

Let

(58) w′ :=
ψ(w)− β

`α
.

It follows from Lemma 7 that ψ is increasing so that we have

(59) w′ =
ψ(w)− β

`α
<
ψ(w+)− β

`α
= w− < w

In particular, this implies that w′ ∈ ∆(w). Using (56), we get

w+ − w =
ψ(w+)− βk−1

`αk−1
− ψ(w)− βk−1

`αk−1
=
ψ(w+)− ψ(w)

`αk−1
.

Moreover, we infer from (57) that

ψ(w+) = `αw− + β

and from (58) that
ψ(w) = `αw′ + β.

So, we obtain

w+ − w =
(`αw− + β)− (`αw′ + β)

`αk−1
=
`α(w− − w′)

`αk−1
.

But, since w′ < w− by (59) and since w− ∈ V, we have w− ≥ w′ + ε(w′).
Therefore,

w+ − w =
`α(w− − w′)

`αk−1
≥ `α−αk−1ε(w′)

and the latter quantity is bounded from below by the minimum of (53). �

Proof of Proposition 35. We start with the proof of (i). Since any vertex
of T (k, ε̆(−µk), v) has finitely many children, in order to prove (i), it is
sufficient to prove that the height of T (k, ε̆(−µk), v) is less than or equal
to (51). Consider an arbitrary vertex of T (k, ε̆(−µk), v) with label w and
depth d. Let w0 = w,w1, . . . , wd = v be the labels of the vertices encountered
along the path from this vertex to the root of T (k, ε̆(−µk), v), so that, for
any i ∈ {0, . . . , d− 1}, we have

wi ∈ ∆(wi+1).
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We claim that

(60) −µk + ε̆(−µk) ≤ w1 < · · · < wd−1 < wd = v < −µk−1

and that, for all i ∈ {0, . . . , d− 1},
(61) wi+1 ∈ π(Ψ(wi)).

Indeed, for any i ∈ {0, . . . , d − 1}, we have wi ∈ ∆(wi+1), so Lemma 34
ensures that wi+1 > wi and that wi+1 ∈ π(Ψ(wi)). So, we have justified (61)
and, in order to justify (60), it only remains to prove that w1 ≥ −µk+ε̆(−µk).
The latter inequality follows from the fact that w1 is the label of a vertex
of T (k, ε̆(−µk), v) which is not a leaf because that vertex has a vertex with
label w0 as a child.

Now, applying Lemma 27, we get

d− 1 < (n+ 1)
wd + µk

min {ε̆(−µk), (d`n)−1}
+ h(wd)

and, hence, d is less than or equal to (51). This concludes the proof of (i).
Let us now prove (ii). Since w is the label of a leaf of T (k, ε̆(−µk), v), we

have w < −µk + ε̆(−µk). If w < −µk, there is nothing to prove. Suppose
that −µk ≤ w < −µk + ε̆(−µk). Then −µk + ε̆(−µk)−w > 0. Moreover, for
any w′ ∈ V>w, we have w′ > w ≥ −µk and, hence, w′ ≥ −µk + ε̆(−µk) =
w+(−µk+ ε̆(−µk)−w). We have shown that −µk+ ε̆(−µk)−w is a positive
lower bound on ε(w).

Last, (iii) follows from Lemma 37. Indeed, Lemma 37 ensures that a
positive lower bound on ε(v) is given by the minimum of

(62) {ε(w′)`dw,w′−αk−1 | w′ ∈ ∆(w)}∪{−µk−1−w,min(π(Ψ(w))\{w})−w}.
Since mw′ ≤ ε(w′) for any w′ ∈ ∆(w), the latter minium is greater than or
equal to the minimum of

(63) {mw′`
dw,w′−αk−1 | w′ ∈ ∆(w)}∪{−µk−1−w,min(π(Ψ(w))\{w})−w}

(we emphasize that the only difference between (62) and (63) is the first
quantity, ε(w′) versus mw′), whence the desired result. �

5.4. Theoretical results for the recursive step: case v ∈ {−µK−1, . . . ,−µ1}.
In this section, we consider k ∈ {1, . . . ,K} and we assume that we are able to
compute a positive lower bound ε̆(w) on ε(w) for any w ∈]−∞,−µk−1[∩Zd,`.
The following result explains how one can compute a positive lower bound
on ε(−µk−1) by using finitely many ε̆(w) with w ∈]−∞,−µk−1[∩Zd,`.

Proposition 38. Let k ∈ {2, . . . ,K}. A positive lower bound on ε(−µk−1)
is given by the minimum of

{ε̆(w′)`d−µk−1,w
′−αk−2 | w′ ∈ ∆(−µk−1)}

and(64)
{µk−1 − µk−2,min(π(Ψ(−µk−1)) \ {−µk−1}) + µk−1}

where d−µk−1,w′ is defined by (54).

Remark 39. It follows from (the first assertion of) Lemma 34 that any
w′ ∈ ∆(−µk−1) satisfies w′ < −µk−1, hence, it is legitimate to consider
ε̆(w′) in (64).
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Example 40. In section 9, we will have to compute a positive lower bound
on ε(0) for the operator defined by (14). Let us explain how this can be
done using Proposition 38. We will see in section 9.1 that K = 2, µ1 = 0
and µ2 = 1

2 . Since 0 = −µ1, a lower bound on ε(0) is given by the minimum
of the set (64) with k = 2 and −µk−1 = −µ1 = 0. In order to compute
this minimum, we have to compute ∆(0). We find ∆(0) = {−1

2 ,−
1
4}. Then,

we have to compute positive lower bounds ε̆(−1
2) and ε̆(−1

4) on ε(−1
2) and

ε(−1
4) respectively. We have seen in Example 30 and Example 36 that we

can take ε̆(−1
2) = 1

4 and ε̆(−1
4) = 1

8 . Using the calculations of section 9.2, it
is easily seen that the minimum of (64) with k = 2 and −µk−1 = −µ1 = 0
is the minimum of the following numbers:

• ε̆(w′)`d0,w′−α0 = 1
421−0 = 1

2 for w′ = −1
2 ;

• ε̆(w′)`d0,w′−α0 = 1
822−0 = 1

2 for w′ = −1
4 ;

• µ1 − µ0 = +∞;
• min(π(Ψ(−µ1)) \ {−µ1}) + µ1 = min(π(Ψ(0)) \ {0}) = 1.

This minimum is equal to 1
2 . Thus, a positive lower bound of ε(0) is given

by ε̆(0) = 1
2 .

Proof. This follows immediately from Lemma 37 when replacing k with k−1
since ε̆(w′) ≤ ε(w′) for any w′ ∈ ∆(−µk−1). �

5.5. Pseudo-code. Here is a pseudo-code transcription of the algorithm
outlined in section 5.1. Its core is the function Lower_Bound_ε_param
defined in Algorithm 42 below.

Algorithm 41.

Input: L a Mahler operator with coefficients in K[z], v ∈ Zd,`.
Output: positive lower bound on ε(v).

def Lower_Bound_ε (L, v)
for k from K to 1

set ε̆k=Lower_Bound_ε_param (L, k, (ε̆i)k+1≤i≤K ,−µk)
end for
return Lower_Bound_ε_param (L, 0, (ε̆i)1≤i≤K , v)

end def

Algorithm 42.

Input: L a Mahler operator with coefficients in K[z], K0 ∈ {0, . . . ,K},
(ε̆i)K0+1≤i≤K ∈ QK−K0

>0 , v ∈ Zd,`.
Output: positive lower bound on ε(v) provided that:

• either K0 = K and v ≤ −µK0 = −µK ;
• or K0 ∈ {0, . . . ,K − 1}, v ≤ −µK0 and ε̆K0+1, . . . , ε̆K are positive
lower bounds on ε(−µK0+1), . . . , ε(−µK) respectively.

def Lower_Bound_ε_param (L,K0, (ε̆i)K0+1≤i≤K , v)
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if v < −µK then1

return −µK − v2

end if3

if v = −µK then4

set S = V1 \ {−µK}5

if S 6= ∅ then6

return minS + µK7

otherwise8

return 19

end if10

end if11

if v ∈]− µk,−µk−1[ for some k ∈ {K0 + 1, . . . ,K} then12

set (w′,m) =Lower_Bound_ε_interval (L, k − 1, (ε̆i)k≤i≤K , v)13

return m14

end if15

if v = −µk−1 for some k ∈ {K0 + 1, . . . ,K} then16

for w′ ∈ ∆(−µk−1)17

setmw′=Lower_Bound_ε_param (L, k−1, (ε̆i)k≤i≤K , w
′)18

end for19

return the minimum of20

{mw′`
d−µk−1,w

′−αk−2 | w′ ∈ ∆(−µk−1)}
and

{µk−1 − µk−2,min(π(Ψ(−µk−1)) \ {−µk−1}) + µk−1}
where d−µk−1,w′ is defined by (54).21

end if22

end def

In Algorithm 42:
• the lines 1–11 correspond to the base case considered in section 5.2;
• the lines 12–15 correspond to the recursive step considered in section
5.3 which can itself be encoded as a recursive algorithm, namely
Algorithm 43 below;
• the lines 16–22 correspond to the recursive step considered in section
5.4.

Algorithm 43.

Input: L a Mahler operator with coefficients in K[z], K0 ∈ {0, . . . ,K − 1},
(ε̆i)K0+1≤i≤K ∈ QK−K0

>0 , w ∈ Zd,`.
Output: positive lower bound on ε(w) provided that w < −µK0 and ε̆K0+1, . . . , ε̆K
are positive lower bounds on ε(−µK0+1), . . . , ε(−µK) respectively.

def Lower_Bound_ε_interval (L,K0, (ε̆i)K0+1≤i≤K , w)1

if w < −µK0+1 + ε̆K0+1 then2

if w < −µK0+1 then3

setm =Lower_Bound_ε_param (L,K0+1, (ε̆i)K0+2≤i≤K , w)4

otherwise5
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set m = −µK0+1 + ε̆K0+1 − w6

end if7

return (w,m)8

end if9

if w ≥ −µK0+1 + ε̆K0+1 then10

for each v ∈ ∆(w)11

compute bv=Lower_Bound_ε_interval (L,K0, (ε̆i)K0+1≤i≤K , v)12

end for13

set m to the minimum of14

{m′`dw,w′−αk | (w′,m′) = bv for some v ∈ ∆(w)}(65)
∪ {−µk − w,min(π(Ψ(w)) \ {w})− w}
where dw,w′ is defined by (54)15

return (w,m)16

end if17

end def18

19

5.6. An algorithm for computing a positive lower bound on τ . To
compute a lower bound on τ = min

{
ε(−µ1), . . . , ε(−µK), (d`n)−1

}
, we can

simply run Algorithm 41 K times to compute positive lower bounds on
ε(−µ1), . . . , ε(−µK). However, the calculations would involve numerous re-
dundancies. From an algorithmic point of view, it is better to use the follow-
ing algorithm which eliminates these redundancies and which is an obvious
modification of Algorithm 41.

Algorithm 44.

Input: L a Mahler operator with coefficients in K[z]
Output: positive lower bound on τ = min

{
ε(−µ1), . . . , ε(−µK), (d`n)−1

}
.

def Lower_Bound_τ (L)
for k from K to 1

set ε̆k= Lower_Bound_ε_param (L, k, (ε̆i)k+1≤i≤K ,−µk)
end for
return the minimum of ε̆1, . . . , ε̆K and 1

d`n

end def

6. The property ?V

In this section, we consider a Mahler operator

(66) L = anφ
n
` + an−1φ

n−1
` + · · ·+ a0

with coefficients a0, . . . , an ∈ K[z] such that a0an 6= 0. We recall the follow-
ing notation:

Sol(L,H ) = {f ∈H | L(f) = 0}.

Hypothesis A. Throughout this section, we let V be a subset of Q satisfying
the following properties:
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(1) Sol(L,H ) ⊂H|V ;
(2) V is well-ordered;
(3) −S(L) ⊂ V;
(4)

⋃
v∈V π(Ψ(v)) = V.

Theorem 17 ensures that such a set V exists.

Definition 45. We say that a subset R of Q satisfies property ?V if :
a. −S(L) ⊂ R ⊂ V;
b.
⋃
v∈V\R π(Ψ(v)) = V \ R.

The interest of property ?V lies in the following result.

Theorem 46. If R satisfies ?V , then the K-linear map

(67)
•|R : H → H|R

f =
∑

γ∈Q fγz
γ 7→ f|R =

∑
γ∈R fγz

γ

induces a K-linear isomorphism

(68) Sol(L,H )
∼−→ CR

where

CR = {f ∈H|R | π(suppL(f)) ∩R = ∅}
= {f ∈H|R | supp(L(f)) ∩ ψ(R) = ∅}.

The proof of this result is given in section 6.2 below. It relies on certain
preliminary results gathered in the next section.

Remark 47. In Theorem 56, we will prove that there exists a finite subset
R of Q satisfying property ?V and we will give an algorithm to compute it.
However, in this section, R is not required to be finite.

6.1. Preliminary results. Through this section, we consider a subset R of
Q satisfying ?V . We introduce the following sets:

Γ = V \ R and Λ = ψ(Γ).

The principal aim of this section is to prove the following result.

Proposition 48. For all g ∈H|Λ, there exists f ∈H|Γ such that L(f) = g.

The proof of this result is given at the end of this subsection. The following
lemmas are technical results used in the proof of Proposition 48. On first
reading, the reader can admit these lemmas and read the proof of Proposition
48 directly.

Lemma 49. We have:
• Γ = π(Λ);
• Λ =

⋃
γ∈Γ Ψ(γ);

• Γ ∩ −S(L) = ∅.

Proof. The equality Γ = π(Λ) follows immediately from the fact that ψ and
π are inverse of each other by Lemma 7.

By definition of Γ and condition b. of Definition 45, we have

Γ = V \ R =
⋃

v∈V\R

π(Ψ(v)) =
⋃
v∈Γ

π(Ψ(v)) .
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Applying ψ to the latter equality and using the fact that ψ and π are inverse
of each other by Lemma 7, we obtain Λ =

⋃
γ∈Γ Ψ(γ).

Last, we have Γ ∩ −S(L) = ∅ because −S(L) ⊂ R and Γ ∩ R = ∅ by
definition of Γ. �

Lemma 50. The subsets Γ and Λ of Q are well-ordered.

Proof. Since Γ is a subset of V which is well-ordered, Γ is well-ordered.
Lemma 7 ensures that ψ : Q→ Q is increasing. Thus, the fact that Λ = ψ(Γ)
is well-ordered follows from the fact that Γ is well-ordered. �

Lemma 51. For any g ∈H|Λ \ {0}, there exists a ∈ K such that

val(L(azγ)− g) > val g,

where γ = π(val g). In particular, γ ∈ π(Λ) = Γ.

Proof. Since supp g ⊂ Λ, we have val g ∈ Λ and, hence, γ = π(val g) ∈ π(Λ).
But, π(Λ) = Γ and Γ ∩ −S(L) = ∅ by Lemma 49. So, γ 6∈ −S(L) and
Lemma 11 ensures that valL(zγ) = ψ(γ). Since ψ and π are inverse of each
other by Lemma 7, we get valL(zγ) = val g, i.e., there exists c ∈ K× such
that

L(zγ) = czval g + Hahn series of higher-order valuation.
Therefore, a = c−1gval g has the expected property. �

Lemma 52. If γ ∈ Γ and λ ∈ Λ are such that, for all x ∈ Γ∩] − ∞, γ[,
λ > ψ(x), then λ ≥ ψ(γ).

Proof. Since π and ψ are inverse of each other by Lemma 7, we have λ = ψ(y)
with y = π(λ) ∈ π(Λ) = Γ. By hypothesis, for all x ∈ Γ∩] − ∞, γ[, we
have ψ(y) = λ > ψ(x). Since ψ is increasing by Lemma 7, we get, for all
x ∈ Γ∩] −∞, γ[, y > x. So, y ∈ Γ ∩ [γ,+∞[. In particular, we have y ≥ γ
and, since ψ is increasing by Lemma 7, λ = ψ(y) ≥ ψ(γ) as claimed. �

Lemma 53. Suppose that f, f ′ ∈ H|Γ are such that val(L(f) − g) > ψ(y)
and val(L(f ′) − g) > ψ(y′) for some g ∈ H and some y, y′ ∈ Γ. Then,
f = f ′ on Γ∩]−∞,min{y, y′}].

Proof. We argue by contradiction. Assume on the contrary that f 6= f ′ on
Γ∩] − ∞,min{y, y′}]. Up to interchanging the roles of f and f ′, we can
assume that y ≤ y′ and, hence, that f 6= f ′ on Γ∩] −∞, y]. Using the fact
that Γ is well ordered, we can assume that y is minimal with respect to the
property “f 6= f ′ on Γ∩]−∞, y]”. On the one hand, one can characterize y
in terms of h = f ′ − f ∈ H|Γ \ {0} as the minimal element of Γ such that
h 6= 0 on Γ∩]−∞, y]. So, y = valh. Since valh = y ∈ Γ and Γ∩−S(L) = ∅
by Lemma 49, we have valh 6∈ −S(L) and it follows from Lemma 11 that

(69) valL(h) = ψ(y).

On the other hand, we have

L(h) = (L(f ′)− g)− (L(f)− g).

Applying the z-adic valuation val to the latter equality and using (9), we get

valL(h) ≥ min{val(L(f)− g), val(L(f ′)− g)}.
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But, by hypothesis, we have val(L(f) − g) > ψ(y) and val(L(f ′) − g) >
ψ(y′) ≥ ψ(y), the latter inequality ψ(y′) ≥ ψ(y) following from the facts that
y′ ≥ y and that ψ is increasing by Lemma 7. Therefore, valL(h) > ψ(y).
This contradicts (69). �

Lemma 54. Consider y ∈ Γ ∪ {+∞} and a family (fx)x∈Γ∩]−∞,y[ of Hahn
series such that, for all x ∈ Γ∩] − ∞, y[, fx ∈ H|Γ. Suppose that, for
all x, x′ ∈ Γ∩] − ∞, y[, we have fx = fx′ on Γ∩] − ∞,min{x, x′}]. Then,
there exists f ∈ H|Γ∩]−∞,y[ such that, for all x ∈ Γ∩] − ∞, y[, f = fx on
Γ∩]−∞, x].

Proof. We set, for all x ∈ Γ∩]−∞, y[, fx =
∑

γ∈Γ ax,γz
γ . Set

f =
∑

γ∈Γ∩]−∞,y[

aγ,γz
γ ∈H|Γ∩]−∞,y[ .

Let x ∈ Γ∩]−∞, y[ and γ ∈ Γ∩]−∞, x]. Using the hypothesis of the lemma
with x′ = γ, we have fx = fγ on Γ∩] −∞, γ]. In particular, looking at the
coefficients of zγ , we obtain ax,γ = aγ,γ . Thus, f = fx on Γ∩]−∞, x].

�

Proof of Proposition 48. Consider g ∈ H|Λ. We have to prove that there
exists f ∈H|Γ such that L(f) = g. We split the proof in two main steps.

Step 1. Let us first prove that, for all y ∈ Γ, there exists fy ∈ H|Γ such
that val(L(fy)− g) > ψ(y). We argue by contradiction: we assume that this
is not true, i.e., that the set

Y = {y ∈ Γ | ∀f ∈H|Γ, val(L(f)− g) ≤ ψ(y)}

is nonempty. Since Y is a nonempty subset of the well-ordered set Γ, it has
a minimal element ymin.

We claim that there exists f ∈H|Γ∩]−∞,ymin[ such that

(70) val(L(f)− g) > ψ(x)

for all x ∈ Γ∩]−∞, ymin[, and such that

(71) val(L(f)− g) ∈ Λ.

Indeed, for all x ∈ Γ∩]−∞, ymin[, we have x ∈ Γ\Y and, hence, there exists
fx ∈H|Γ such that

(72) val(L(fx)− g) > ψ(x).

According to Lemma 53, we have, for any x, x′ ∈ Γ∩]−∞, ymin[, fx = fx′ on
Γ∩]−∞,min{x, x′}]. Lemma 54 ensures that there exists f ∈H|Γ∩]−∞,ymin[

such that, for all x ∈ Γ∩]−∞, ymin[, f = fx on Γ∩]−∞, x]. Let us prove that
f satisfies (70) and (71). Let us first note that, for all x ∈ Γ∩]−∞, ymin[,

(73) valL(f − fx) ≥ ψ(val(f − fx)) > ψ(x);

indeed, the first inequality follows from Lemma 11, the second inequality
follows from the facts that val(f − fx) > x and that ψ is increasing by
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Lemma 7. Using (9) and, then, the inequalities (72) and (73), we get, for all
x ∈ Γ∩]−∞, ymin[,

(74) val(L(f)− g) = val(L(f − fx) + L(fx)− g)

≥ min{valL(f − fx), val(L(fx)− g)} > ψ(x).

This justifies (70). Moreover, we have L(f)− g 6= 0 because Y is nonempty,
so

val(L(f)− g) ∈ supp(L(f)− g) ⊂ suppL(f) ∪ supp g ⊂
⋃
γ∈Γ

Ψ(γ) ∪ Λ ⊂ Λ,

the latter two inclusions following from Lemma 14 and Lemma 49 respec-
tively. This justifies (71) and, hence, our claim toward the existence of f .

We fix f ∈ H|Γ∩]−∞,ymin[ satisfying (70) and (71). We can apply Lemma
52 to λ = val(L(f)− g) and to γ = ymin and we obtain

val(L(f)− g) ≥ ψ(ymin).

We have already seen that L(f)− g 6= 0 and that supp(L(f)− g) ⊂ Λ. So,
Lemma 51 ensures that there exists a ∈ K and γ ∈ Γ such that

val(L(azγ) + L(f)− g) > val(L(f)− g) ≥ ψ(ymin).

Therefore, f ′ = azγ + f ∈H|Γ satisfies

val(L(f ′)− g) > ψ(ymin).

This contradicts the fact that ymin belongs to Y . So, Y is empty and,
hence, we have proved that, for all y ∈ Γ, there exists fy ∈ HΓ such that
val(L(fy)− g) > ψ(y).

Step 2. Lemma 53 ensures that, for all y, y′ ∈ Γ, we have fy′ = fy on
Γ∩]−∞,min{y, y′}]. According to Lemma 54 applied with y = +∞, there
exists f ∈HΓ such that, for all y ∈ Γ, f = fy on Γ∩]−∞, y]. Arguing as we
did above for proving (70), we see that, for all y ∈ Γ, val(L(f)− g) > ψ(y).
This implies that L(f) − g = 0 because, otherwise, val(L(f) − g) would
belong to supp(L(f)−g) ⊂ Λ but not to ψ(Γ) and this would contradict the
fact that Λ = ψ(Γ) by definition. �

6.2. Proof of Theorem 46. We recall the following notations introduced
in section 6.1:

Γ = V \ R, Λ = ψ(Γ)

and
CR = {f ∈H|R | supp(L(f)) ∩ ψ(R) = ∅}.

Proving Theorem 46 is equivalent to proving the following properties rela-
tive to the K-linear map •|R defined by (67): •|R(Sol(L,H )) = CR and
ker(•|R) ∩ Sol(L,H ) = {0}. Before proving these properties, note that

(75) CR = {f ∈H|R | suppL(f) ⊂ Λ} = {f ∈H|R | L(f) ∈H|Λ}.
Indeed, since Λ = ψ(Γ) = ψ(V \ R) = ψ(V) \ ψ(R), in order to prove
the equality (75), it is sufficient to prove that, for any f ∈ H|R, we have
suppL(f) ⊂ ψ(V). As a matter of fact, the latter property is true since
suppL(f) ⊂

⋃
v∈supp f Ψ(v) by Lemma 14,

⋃
v∈supp f Ψ(v) ⊂

⋃
v∈V Ψ(v) be-

cause supp f ⊂ R ⊂ V and
⋃
v∈V Ψ(v) = ψ(V) by (4) of Hypothesis A.
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Proof of •|R(Sol(L,H )) ⊂ CR. Consider f ∈ Sol(L,H ). Consider the
decomposition f = f|R + f|γ . Applying L to this equality, we get 0 =
L(f|R) + L(f|γ), so

(76) L(f|R) = −L(f|γ).

It follows from Lemma 14 that suppL(f|γ) ⊂
⋃
v∈γ Ψ(v) = Λ, the latter

equality coming from Lemma 49. Therefore,

L(f|R) = −L(f|γ) ∈H|Λ.

Using (75), this proves that the image of f by •|R belongs to CR.
Proof of CR ⊂ •|R(Sol(L,H )). Consider f0 ∈ CR. It follows from (75) that
L(f0) ∈ H|Λ. Proposition 48 ensures that there exists f1 ∈ H|Γ such that
L(f1) = −L(f0). Then f = f0 + f1 belongs to Sol(L,H ) and its image by
•|R is f0.

Proof of ker(•|R) ∩ Sol(L,H ) = {0}. Let f ∈ ker(•|R) ∩ Sol(L,H ).
Then, f belongs to H|Γ and satisfies L(f) = 0. Lemma 12 ensures that
val f ∈ −S(L) ∪ {+∞}. But, val f ∈ Γ ∪ {+∞} and −S(L) ∩ Γ = ∅ by
Lemma 49. So, val f = +∞ and, hence, f = 0.

This concludes the proof of Theorem 46.

7. Computing an R containing E and satisfying ?V .

We use the notations of section 6: we consider the operator L given by
(8) and we let V be a subset of Q satisfying Hypothesis A. Moreover, we let
E be a finite subset of V.

Definition 55. We say that a set R satisfies property ?E,V if E ⊂ R and R
satisfies property ?V .

We shall now give a recursive construction of a finite set satisfying ?E,V .

Theorem 56. The sequence (Ri)i≥0 of subsets of V recursively defined by

R0 = E ∪ −S(L)

and, for all i ≥ 0,

(77) Ri+1 = {v ∈ V | π(Ψ(v)) ∩Ri 6= ∅}

is an eventually constant nondecreasing sequence of finite sets. The above
recursive definition formula can be rewritten as follows, for all i ≥ 0:

(78) Ri+1 =
⋃

(`α,β)∈P(L)

`−α(ψ(Ri)− β) ∩ V.

Moreover, R =
⋃
i≥0Ri is a finite set which satisfies ?E,V .

Example 57. The sets Ri and R are computed in section 9.5 for the oper-
ator L given by (14).
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Proof.
Proof of the equality (78). This equality follows from the following chain of
equalities:

{v ∈ V | π(Ψ(v)) ∩Ri 6= ∅} = {v ∈ V | Ψ(v) ∩ ψ(Ri) 6= ∅}
= {v ∈ V | ∃(`α, β) ∈ P(L), v`α + β ∈ ψ(Ri)}
=

⋃
(`α,β)∈P(L)

{v ∈ V | v`α + β ∈ ψ(Ri)}

=
⋃

(`α,β)∈P(L)

`−α(ψ(Ri)− β) ∩ V.

Proof of the fact that the Ri are finite sets. We argue by induction on i ≥ 0.
The base case i = 0 is clear. We now proceed with the inductive step. Let
us assume that Ri is finite for some i ≥ 0. Then, ψ(Ri) is finite, so, for
all (`α, β) ∈ P(L), `−α(ψ(Ri) − β) ∩ V is finite. Since P(L) is finite, the
equation (78) shows that Ri+1 is finite as well. This concludes the proof.

Proof of the fact that the sequence (Ri)i≥0 is nondecreasing. Consider i ∈
Z≥0. Lemma 15 ensures that, for all v ∈ Ri, we have v ∈ π(Ψ(v)), so
v ∈ π(Ψ(v)) ∩Ri and, hence, v ∈ Ri+1. This shows that Ri ⊂ Ri+1.

Proof of the fact that (Ri)i≥0 is eventually constant. We argue by contradic-
tion: we assume that (Ri)i≥0 is not eventually constant. Then, R =

⋃
i≥0Ri

is infinite because (Ri)i≥0 is nondecreasing. For any v ∈ V, we consider the
sequence (Ri(v))i≥0 of subsets of V defined by

• R0(v) = {v};
• ∀i ≥ 0, Ri+1(v) = {w ∈ V | π(Ψ(w)) ∩Ri(v) 6= ∅}.

Then, (Ri(v))i≥0 is a nondecreasing sequence of finite sets (for the same
reasons that (Ri)i≥0 is an nondecreasing sequence of finite sets). We set
R(v) =

⋃
i≥0Ri(v). Note that :

• we have R =
⋃
v∈R0

R(v); since R is infinite and R0 is finite, there
exists v0 ∈ R0 such that R(v0) is infinite;
• we have R(v0) = {v0} ∪

⋃
v∈R1(v0)\{v0}R(v); since R(v0) is infinite

and R1(v0) is finite, there exists v1 ∈ R1(v0) \ {v0} such that R(v1)
is infinite;
• we have R(v1) = {v1} ∪

⋃
v∈R1(v1)\{v1}R(v); since R(v1) is infinite

and R1(v1) is finite, there exists v2 ∈ R1(v1) \ {v1} such that R(v2)
is infinite.

Iterating this construction, we see that there exists a sequence (vi)i≥0 of
elements of V such that, for all i ≥ 0, vi+1 ∈ R1(vi) \ {vi}. Therefore,
we have vi ∈ π(Ψ(vi+1)) and vi+1 6= vi so vi+1 < vi by Lemma 34 applied
to w = vi and w′ = vi+1 (we draw the reader’s attention to the fact that
vi ∈ π(Ψ(vi+1)) and not the opposite, as it was in section 4). So, the sequence
(vi)i≥0 is decreasing. This contradicts the fact that V is well-ordered. Thus,
the sequence (Ri)i∈Z≥0

is eventually constant. In particular, R = Ri0 for
some i0 ≥ 0 and, hence, R is a finite set.

Proof of the fact that R satisfies property ?V . The fact that R satisfies
property a. of Definition 45 is obvious. Moreover, if v ∈ V \ R, then, for all
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i ≥ 0, we have π(Ψ(v)) ∩Ri = ∅ and, hence, π(Ψ(v)) ∩R = ∅. Thus,

(79)
⋃

v∈V\R

π(Ψ(v)) ∩R = ∅.

But,

(80) V \ R ⊂
⋃

v∈V\R

π(Ψ(v)) ⊂ V;

indeed, the first inclusion follows from the first assertion of Lemma 15 and
the second inclusion follows from property (4) of Hypothesis A. Combining
(79) and (80), we get ⋃

v∈V\R

π(Ψ(v)) = V \ R.

So, R satisfies property b. of Definition 45. �

Let d ∈ Z≥1 be a common denominator of the slopes of L and let V be
the set given by Theorem 17. The following result gives an upper bound on
the least i ∈ Z≥0 such that Ri = R when V is the set given by Theorem 17.

Proposition 58. We let V be the set given by Theorem 17, we let E ⊂ V be
a finite set and we let (Ri)i≥0 and R be the sets given by Theorem 56. We
let H ∈ Z≥0 be such that7 d`HE ⊂ Z and N ∈ Q≥0 be such that E ∪−S(L) ⊂
Q≤N . Let τ be the number defined by (38), namely

τ = min
{
ε(−µ1), . . . , ε(−µK), (d`n)−1

}
∈ Q>0.

We set

c =

⌊
(n+ 1)

N + µK
τ

⌋
+H.

Then, for any i ∈ Z≥c, we have Ri = R.

Proof. Theorem 56 guarantees that the sequence (Ri)i≥0 is nondecreasing
and eventually constant. Let M be the least element of Z≥0 such that
RM = RM+1. It follows easily from the definition of (Ri)i≥0 that, for all
i ∈ Z≥M , Ri = R. In order to conclude the proof, it is thus sufficient to
prove that c ≥ M . Let us prove this. We have c ≥ 0, so the result holds if
M = 0. Otherwise, assume M ≥ 1. The set RM \ RM−1 being nonempty,
one can consider v0 ∈ RM \RM−1. It follows from the definition of (Ri)i≥0,
that there exist v1, . . . , vM ∈ V such that, for all i ∈ {0, . . . ,M − 1},

vi+1 ∈ π(Ψ(vi)) ∩RM−1−i.

We claim that, for any i ∈ {0, . . . ,M − 1}, we have vi /∈ RM−1−i. Indeed,
assume on the contrary that there exists i ∈ {0, . . . ,M − 1} such that vi ∈
RM−1−i. Without loss of generality, we can assume that i is the least element
of {0, . . . ,M − 1} satisfying the latter property. Our choice of v0 guaranties
that i 6= 0. We have vi ∈ RM−1−i and, by construction, vi ∈ π(Ψ(vi−1)) ∩
RM−i, so vi ∈ π(Ψ(vi−1)) ∩ RM−1−i and it follows from the definition of
RM−i that vi−1 ∈ RM−i. This contradicts the minimality of i and concludes
the proof of our claim. It follows that, for any i ∈ {0, . . . ,M − 1}, we have

7We recall that V ⊂ Zd,` by Lemma 24, so that any element of V and, hence, of the finite
set E ⊂ V is of the form a

d`h
for some a ∈ Z and h ∈ Z≥0.
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vi+1 6= vi because vi+1 ∈ RM−1−i by construction and vi /∈ RM−1−i by
the previous claim. Then, Lemma 34 applied to w = vi+1 and w′ = vi
ensures that vi+1 > vi. In conclusion, v0, v1, . . . , vM ∈ V satisfy the following
properties:

• vM ∈ R0 = E ∪ −S(L);
• vi+1 ∈ π(Ψ(vi)) for all i ∈ {0, . . . ,M − 1};
• v0 < v1 < · · · < vM .

It follows from Lemma 28 that

M ≤ (n+ 1)
vM + µK

τ
+ h(vM ) .

Since vM ≤ N and h(vM ) ≤ H and since M is an integer, we have M ≤ c.
This concludes the proof. �

We note the following results for further use.

Lemma 59. With the notations of Theorem 56, maxR = max E ∪ −S(L).

Proof. The inequality maxR ≥ max E ∪ −S(L) follows from the fact that
E ∪ −S(L) = R0 ⊂ R. Proving the converse inequality maxR ≤ max E ∪
−S(L) is equivalent to proving that, for all i ∈ Z≥0,

(81) maxRi ≤ max E ∪ −S(L).

Let us prove this by induction on i. The inequality (81) is obvious when
i = 0 since R0 = E ∪ −S(L). Suppose that the inequality (81) is proved for
some i ∈ Z≥0. Let v ∈ Ri+1. By definition of Ri+1, there exists v′ ∈ Ri
such that v′ ∈ π(Ψ(v)). By induction hypothesis, v′ ≤ max E ∪ −S(L).
By Lemma 15, v = minπ(Ψ(v)), so v ≤ v′ ≤ max E ∪ −S(L). Therefore,
maxRi+1 ≤ max E ∪ −S(L). This concludes the induction. �

Proposition 60. We make the same assumptions and use the same nota-
tions as in Proposition 58. Let τ̆ be a positive lower bound of τ . Then, the
sequence (Ri)i≥0 can also be recursively computed as follows:

R0 = (E ∪ −S(L)) ∩ VM
and, for all i ≥ 0,

(82) Ri+1 =
⋃

(`α,β)∈P(L)

`−α(ψ(Ri)− β) ∩ VM

where
M = (n+ 1)

(⌊
(n+ 1)

N + µK
τ̆

⌋
+H

)
.

Proof. We have seen in Theorem 56 that the sequence (Ri)i≥0 can be recur-
sively computed as follows:

R0 = E ∪ −S(L)

and, for all i ≥ 0,

Ri+1 =
⋃

(`α,β)∈P(L)

`−α(ψ(Ri)− β).

Intersecting with VM , we obtain:

R0 ∩ VM = (E ∪ −S(L)) ∩ VM
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and, for all i ≥ 0,

Ri+1 ∩ VM =
⋃

(`α,β)∈P(L)

`−α(ψ(Ri)− β) ∩ VM .

Given this formula, in order to prove the Proposition, it is clearly sufficient
to prove that, for all i ≥ 0, we have Ri ⊂ VM . Let us prove this.

We claim that it is sufficient to prove that Rd ⊂ VM where

d =

⌊
(n+ 1)

N + µK
τ̆

⌋
+H.

Indeed, Proposition 58 guarantees that, for all i ∈ Z≥0, Ri ⊂ Rc = R where

c =

⌊
(n+ 1)

N + µK
τ

⌋
+H.

But, since τ̆ is a positive lower bound of τ , we have

d =

⌊
(n+ 1)

N + µK
τ̆

⌋
+H ≥ c.

So, Rc = Rd = R and, for all i ∈ Z≥0, Ri ⊂ Rc = Rd. This justifies our
claim.

We now claim that, in order to conclude the proof, it is sufficient to prove
that, for all v ∈ Rd, we have

(1) v ≤ N ;
(2) h(v) ≤ H + nd.

Indeed, Proposition 22 ensures that, for all v ∈ Rd, we have

v ∈ V⌊
(n+1)

v+µK
τ

+h(v)
⌋.

But, if (1) and (2) are true, then we have, for all v ∈ Rd,⌊
(n+ 1)

v + µK
τ

+ h(v)

⌋
≤
⌊

(n+ 1)
N + µK

τ̆
+H + nd

⌋
= (n+ 1)d = M.

So Rd ⊂ VM . This proves our claim.
In order to complete the proof, it only remains to prove (1) and (2). The

inequality (1) is a direct consequence of Lemma 59 and of our choice of N .
To justify inequality (2), we prove more generally that, for all i ∈ Z≥0, for
all v ∈ Ri, h(v) ≤ H + ni. We proceed by induction on i. The base case
i = 0 is true by our choice of H. We now assume that, for some i ∈ Z≥0, we
have, for all v ∈ Ri, h(v) ≤ H +ni. Consider v ∈ Ri+1. By definition of the
sequence (Ri)i≥0, the set π(Ψ(v)) ∩Ri is nonempty (see (77)); let w be in this
intersection. By Lemma 24, we have h(v) ≤ h(w) +n. But, by the inductive
hypothesis, we have h(w) ≤ H + ni. So h(v) ≤ H + ni+ n = H + n(i+ 1).
This concludes the induction. �

8. Answer to Question 1

In this section, we consider a Mahler operator

L = anφ
n
` + an−1φ

n−1
` + · · ·+ a0

with coefficients a0, . . . , an ∈ K[z] such that a0an 6= 0.
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8.1. The algorithm.

Algorithm 61.

Input: L a Mahler operator with coefficients in K[z], E a finite subset of Q.
Output: the image under •|E of a basis of Sol(L,H ); it is a generating
family of the K-vector space made of the f ∈ H|E for which there exists a
solution f̃ ∈H of L such that f̃|E = f and even a basis if −S(L) ⊂ E .

set R−1 = ∅
set τ̆ =Lower_Bound_τ (L) (see Algorithm 44)
let H be the least integer such that `HE ⊂ 1

dZ
set N = max E ∪ −S(L)

set M = (n+ 1)
(⌊

(n+ 1)N+µK
τ̆

⌋
+H

)
compute R0 = (E ∪ −S(L)) ∩ VM
set i = 0
while Ri 6= Ri−1

compute Ri+1 =
⋃

(`α,β)∈P(L) `
−α(ψ(Ri)− β) ∩ VM

increment i by 1
end while
set R = Ri;
compute a basis (f1, . . . , ft) of the K-vector space CR
return (•|E(f1), . . . , •|E(ft)).

Theorem 62. Algorithm 61 answers Question 1 by the positive.

Proof. Let us first consider the computability issues. We can compute VM
using the recursive formula from Theorem 17. Then, we can compute R0 =
(E ∪−S(L))∩VM because E ∪−S(L) and VM are explicit finite sets. We can
compute Ri+1 from Ri with the formula Ri+1 =

⋃
(`α,β)∈P(L) `

−α(ψ(Ri) −
β)∩VM because P(L), VM and, for any (`α, β) ∈ P(L), `−α(ψ(Ri)− β) are
explicit finite sets. Proposition 60 and Theorem 56 guaranty that Ri = Ri−1

for some i ∈ Z≥1, so the “while” loop will stop after finitely many steps.
Once R has been calculated, computing a basis (f1, . . . , ft) of CR amounts
to compute a basis of solutions of an explicit system of linear equations.
Indeed one can compute explicit linear maps (Fδ : KR → K)δ∈ψ(R) such
that, for any f =

∑
γ∈R fγz

γ ∈H|R,

L(f) =
∑

δ∈ψ(R)

Fδ((fγ)γ∈R)zδ + terms whose support is disjoint from ψ(R).

So, f belongs to CR if and only if, for all

(83) Fδ((fγ)γ∈R) = 0, for all δ ∈ ψ(R).

Finding a basis of CR amounts to finding a basis of solutions of this system
of linear equations. This can be done algorithmically.

Let us now justify that this algorithm returns the correct output, namely
the image under •|E of a basis of Sol(L,H ).
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It follows from Theorem 17 that Sol(L,H ) ⊂ H|V . Since R satisfies
?R0,V by Proposition 60 and Theorem 56, it follows from Theorem 46 that
the map •|R : H → H|R induces an isomorphism between Sol(L,H ) and
CR. So, (•−1

|R (f1), . . . , •−1
|R (ft)) is a basis of Sol(L,H ). But, for all i ∈

{1, . . . , t}, after setting gi = •−1
|R (fi), which is an element of Sol(L,H ), we

have supp(gi) ∩ E ⊂ supp(gi) ∩R and, hence,

•|E(•−1
|R (fi)) = •|E(gi) = •|E(•|R(gi)) = •|E(fi).

Thus,
(•|E(f1), . . . , •|E(ft)) = (•|E(•−1

|R (f1)), . . . , •|E(•−1
|R (ft)))

is the image under •|E of a basis of Sol(L,H ). Thus, (•|E(f1), . . . , •|E(ft)) is
a generating family of the K-vector space •|E(Sol(L,H )), which is nothing
but the K-vector space made of the f ∈H|E for which there exists a solution
f̃ ∈ H of L such that f̃|E = f . Last, if −S(L) ⊂ E , then the restriction of
•|E to Sol(L,H ) is injective as a consequence of Corollary 13 and, hence,
(•|E(f1), . . . , •|E(ft)) is a basis of the K-vector space •|E(Sol(L,H )). �

8.2. On the complexity of Algorithm 61. In this section, by “complex-
ity” we mean the number of basic operations (+, −, ×, ÷) in K and com-
parisons in Q ∪ {−∞,+∞} performed by an algorithm.

To estimate the complexity of Algorithm 61, we shall suppose that n ≥ 2.
Indeed, if n = 1, then (1) has a nonzero solution f ∈ H if and only if the
coefficient of zval(a0) in a0 is the opposite of the coefficient of zval(a1) in a1;
in this case, we have

f = λz
val(a1)−val(a0)

`−1

∞∏
k=0

−a1(z`
k
)z−`

k val(a1)

a0(z`k)z−`k val(a0)

for some λ ∈ K \ {0}. Thus, there is no need using Algorithm 61.

Proposition 63. Suppose that n ≥ 2. Let τ be defined by (38) and τ̆ > 0
be a lower bound on τ . Let N be an integer and let

E = EN =
{a
b
| a ∈ Z, b ∈ Z \ {0},max{|a|, |b|} ≤ N

}
Suppose that N is large enough so that S(L) ⊂ E. Then, Algorithm 61 has
complexity

(84) O
(

(δn)3n2N/τ̆
)

when one does not take into account the complexity of computing τ̆ .

Remark 64. 1. The complexity of the algorithm in Theorem 62 depends
strongly on the lower bound τ̆ computed by Algorithm 44.

2. Of course, the complexity of this algorithm depends on the choice of
the integer `. In (84), this dependency is hidden in the parameter τ̆ which is
bounded from above by `n.

3. In comparison, the algorithm given in [CDDM18] to find Puiseux solu-
tions has complexity Õ(n2Nd`n), where d is defined as in Section 4.

Proof. We note that, with the notation of the algorithm, we have H ≤
dlogN/ log `e.
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Computation of the Newton polygon. One can compute the set P(L) in
O(]P(L)) operations and the set

{(j, val aj(z)) | j ∈ {0, . . . , n}}

with the same complexity. Then, one can compute the set S(L) of slopes
of N (L) and the endpoints of these slopes by performing O(n) comparisons
and operations. Furthermore, one may return the set of slopes as an ordered
list of rational numbers with the same complexity.

Computation of VM . The set V0 = −S(L) has K elements. This set can
be computed in O(K) operations, once S(L) is known. Then, for any i,
the set Vi has at most (]P(L))iK elements. Suppose that the set Vi has
been computed for some i and that it is given as an ordered list of rational
numbers. Let us compute the ordered list of all elements of Vi+1. Fix a
point p = (`α, β) ∈ P(L). Then, since Vi is given as an ordered list, one
may compute the ordered list of elements of the set

Vi(p) = {π(v`α + β) | v ∈ Vi}

in O((]P(L))iK). Thus, the computation of the ]P(L) lists Vi(p), p ∈
P(L), requires O((]P(L))i+1K) operations. Given k ordered lists containing
m elements each, one may order the union of the k lists in O(km log(k))
operations. Thus, once the ordered lists of elements of Vi(p), p ∈ P(L), are
computed, the ordered list of elements of

Vi+1 =
⋃

p∈P(L)

Vi(p)

can be computed in O((]P(L))i+1K log(]P (L))). In fine, the computation
of the ordered list of elements of VM can be performed with

(85) O((]P(L))MK log(]P (L)))

operations. Furthermore, one has

(86) ]VM ≤ (]P(L))MK.

Computation of R. We now have an ordered list of all elements of VM . One
may compute an ordered list of all elements of E in O(]E log(]E)). Two
ordered lists of rational numbers being given, one can compute the ordered
list of elements belonging to both lists making a number of comparisons
at most equal to the maximum of the size of these lists. Thus, one may
compute the ordered list of elements of R0 = E ∩ VM by making O(]E +
]VM ) comparisons. Suppose that the ordered list of elements of Ri has been
computed, for some integer i ≥ 0. Note that ]Ri ≤ ]E(]P(L))i. Then, for
each p = (`α, β) ∈ P(L) one can compute the ordered list of elements of

`α(ψ(Ri)− β) ∩ VM
in O(]E(]P(L))i + ]VM ) operations. Once these ]P(L) lists are stored, one
may compute the ordered list of elements of Ri+1 by making

O(]E(]P(L))i+1 log(]P(L)))
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comparisons. In fine, the total complexity of the computation of R = Rc is
in

(87) O(]E(]P(L))c log(]P(L)) + c]P(L)]VM )

Furthermore, we have

(88) ]R ≤ ]E(]P(L))c .

Computation of a basis of CR. Now that the ordered list of elements of R has
been computed, one may compute the ordered list of elements of ψ(R) with
O(]R) operations. The coefficients of the system of linear equations defining
CR can be computed with O(]P(L)]R) operations. Solving a linear system
with m indeterminates necessitates O(mΘ) operations, for some Θ < 3 (for
example, one may take Θ = log2(7) ' 2, 81; see [BCG+17]). Thus, once the
coefficients of the system of linear equations is known, one may compute a
basis of CR in

(89) O((]R)Θ)

operations.

Total complexity of the algorithm. Once a basis of CR is known, the com-
plexity of the end of the algorithm is negligible with respect to the number
of operations performed so far. Combining (85), (86), (87), (88) and (89),
the complexity of this algorithm is

(90) O(]EΘ(]P(L))cΘ + c]P(L)M+1K) .

Furthermore, we have the following bounds

]P(L) ≤ (δ + 1)(n+ 1) ,
]E ≤ 2N2 ,
µK ≤ N ,
c ≤ 2(n+ 1)Nτ̆−1 + logN ,
M ≤ 2(n+ 1)2Nτ̆−1 + (n+ 1) logN ,
K ≤ n ,
Θ < n+ 1 .

Thus, the second term in (90) dominates the first one. It follows that the
complexity of the algorithm is

O
((

2(n+ 1)Nτ̆−1 + logN
) (

(δ + 1)(n+ 1)
)2(n+1)2Nτ̆−1+(n+1) logN+1

n
)

Now, the result follows from the fact that the quantity above is in

O
(

(δn)3n2N/τ̆
)
.

�

9. An example : the Rudin-Shapiro Mahler equation

Consider the following 2-Mahler equation:

(91) −2zy(z4) + (z − 1)y(z2) + y(z) = 0 .

One can prove that:
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i) up to a multiplicative constant, the only solution of (91) in H is
actually a power series, namely the generating series of the Rudin-
Shapiro sequence, see [AS03] for instance;

ii) (91) has another nonzero solution of the form fe− 1
2
where f ∈ H

and where e− 1
2
satisfies φ2(e− 1

2
) = −1

2e− 1
2
.

We won’t be proving property i) here, as that would take us too far from
our objective to illustrate Algorithm 61. Property ii) could be proved using
[Roq22] but we will give another proof based on Algorithm 61, which has
the advantage of also giving as many coefficients of f as we like.

Let us first note that fe− 1
2
is a solution of (91) if and only if f is a solution

of the 2-Mahler equation

(92) zy(z4) + (z − 1)y(z2)− 2y(z) = 0,

which is nothing but the 2-Mahler equation associated to the 2-Mahler op-
erator

(93) L = zφ2
2 + (z − 1)φ2 − 2

defined by (14). In what follows, we will run Algorithm 61 for this L and
for the set E defined by

(94) E8 :=
{a
b
∈ Q | max{|a|, |b|} ≤ 8

}
.

We will see that the output of this algorithm is

(95) z−
1
2 − 2z−

1
4 + 4z−

1
8

− 1

3
+ z

1
2 − 2z

3
4 + 4z

7
8 − 5

6
z + z

3
2 − 2z

7
4 +

11

12
z2 − z

5
2

− 5

12
z3 + z

7
2 − 23

24
z4 +

13

24
z5 − 7

24
z6 − 5

24
z7 − 1

48
z8.

Since −S(L) ⊂ E , this shows that the K-vector space •|E(Sol(L,H )) has
dimension 1 and is generated by (95). Moreover, since the restriction of •|E
to Sol(L,H ) is injective by Corollary 13, this proves that

Sol(L,H ) = Cf

for some f ∈ H such that •|E(f) =(95). Therefore, fe− 1
2
is a solution

of (91) such that •|E(f) =(95). This justifies property ii) above and gives
moreover the value of the coefficients of f corresponding to the indices in E .

Let us take a close look at how Algorithm 61 works when we take as input
the operator L given by (14) and the set E given by (94). This is done in
section 9.5, after some preliminaries.

9.1. Newton polygon and slopes of L. The Newton polygon N (L) of L
is the lower convex hull of the set

P(L) = {(1, 0), (2, 0), (2, 1), (4, 1)}.

We have
S(L) = {µ1, µ2} with µ1 = 0 and µ2 =

1

2
.

A common denominator of the slopes of L is thus d = 2.
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1 2 3 4
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(a) Case v = 1/4

2 3 4

−1

1

2

p0 p1

p3 p2

p′3

p′1

ψ(v)

p′0

p′2

(b) Case v = −1/4

3 4

1

2

p0 p1

p3 p2

p′3

p′1

p′0

p′2

ψ(v)

(c) Case v = −3/4

Figure 2. This figure is relative to the operator L given by (14).
We have P(L) = {p0, p1, p2, p3}. The Newton polygon N (L) is
the shaded area. Its vertices are p0, p1 and p2 and we have S(L) =
{0, 1/2}. In each subfigure, we consider a specific v ∈ Q. The point
p′k is the projection of pk along a line of slope −v onto the y-axis;
so, the dotted segments have slope −v and Ψ(v) = {p′0, p′1, p′2, p′3}.
The dashed segment with left extremity p′k is the segment with
lowest slope among those linking p′k to an element of P(L). The
slope of this segment is thus the opposite of π(qk) where qk is the
ordinate of p′k and, hence, π(Ψ(v)) is the set of the opposite of the
slopes of the four dashed segments.

The vertices, ordered by increasing abscissa, of the polygon N (L) are

p0 = (1, 0), p1 = (2, 0) and p2 = (4, 1).

For any k ∈ {0, 1, 2}, we have

pk = (`αk , βk) = (`αk , val aαk)

with

α0 = 0, β0 = 0, α1 = 1, β1 = 0, α2 = 2, β2 = 1.

The set P(L), the Newton polygon N (L) and the vertices pk are repre-
sented in Figure 2.

9.2. The maps π and Ψ. Straightforward calculations show that

Ψ(v) = {v, 2v, 2v + 1, 4v + 1} and π(q) =

{
q/2 if − 1 ≤ q < 0,
q if q ≥ 0.

We do not need to specify π(q) when q < −1.
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9.3. The sets Vi. One can compte as many Vi as necessary using their
recursive definition. For instance,

V0 = −S(L) =

{
−1

2
, 0

}
,

V1 = π

(
Ψ

(
−1

2

)
∪Ψ(0)

)
= π

({
−1,−1

2
, 0, 1

})
=

{
−1

2
,−1

4
, 0, 1

}
,

V2 = π

(
Ψ

(
−1

2

)
∪Ψ

(
−1

4

)
∪Ψ (0) ∪Ψ(1)

)
=

{
−1

2
,−1

4
,−1

8
, 0,

1

2
, 1, 2, 3, 5

}
· · · · · · · · ·

Remark 65. In this very peculiar example, we could prove that

V =

{
k − 1

2n
| k, n ∈ Z≥0, (k, n) 6= (0, 0)

}
.

As this property will not be used, we only briefly indicate how to prove the
most useful inclusion, namely the inclusion of V in the right-hand side of the
latter equality, and leave the details and proof of the other inclusion to the
reader. Let us denote this right-hand side by W. One can easily check that
−S(L) ⊂ W and that, for any w ∈ W, π(Ψ(w)) ⊂ W. Given the definition
of V, this clearly implies that V ⊂ W.

When running Algorithm 61, we will first need to call Algorithm 44 in
order to calculate a positive lower bound τ̆ on τ , which is defined by (38).

9.4. Computation of a positive lower bound on τ . We will now explain
how Lower_Bound_τ(L) described in Algorithm 44 runs to compute a lower
bound τ̆ on τ . It takes the following steps:

(1) it computes a lower bound

ε̆2 = LB_ε_p(L, 2, (),−µ2)=LB_ε_p(L, 2, (),−1

2
)

on ε(−µ2) = ε(−1
2);

(2) it computes a lower bound

ε̆1 = LB_ε_p(L, 1, (ε̆2),−µ1)=LB_ε_p(L, 1, (ε̆2), 0)

on ε(−µ1) = ε(0);
(3) it returns

τ̆ = min{ε̆1, ε̆2,
1

2 · 22
};

where we have written LB_ε_p for Lower_Bound_ε_param defined in Al-
gorithm 42, in order to avoid heavy notations. These three steps are detailed
in the following three sections.
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9.4.1. Execution of LB_ε_p(L, 2, (),−µ2) =LB_ε_p(L, 2, (),−1
2). We are

in the situation starting in row 4 of Algorithm 42 since −1
2 = −µ2. Thus,

LB_ε_p(L, 2, (),−1
2) returns

min

(
V1 \

{
−1

2

})
+

1

2
= −1

4
+

1

2
=

1

4
.

This latter value 1
4 is stored in ε̆2.

9.4.2. Execution of LB_ε_p(L, 1, (ε̆2),−µ1) =LB_ε_p(L, 1, (1
4), 0). It takes

the following steps.
(1) Since 0 = −µ1, we are in the situation starting in row 16 of Algorithm

42 with k = 2.
(2) For any w′ ∈ ∆(−µ1) = ∆(0) = {−1

2 ,−
1
4}, it computes

mw′ = LB_ε_p(L, 1, (
1

4
), w′).

(3) LB_ε_p(L, 1, (1
4),−1

2) returns 1
4 after calculations similar to those

described in 9.4.1.
(4) LB_ε_p(L, 1, (1

4),−1
4) runs as follows.

(a) Since −1
4 ∈]− 1

2 , 0[=]−µ2,−µ1[, we are in the situation starting
in row 12 of Algorithm 42 with k = 2. So, LB_ε_p(L, 1, (1

4),−1
4)

calls LB_ε_i (L, 1, (1
4),−1

4), where we have written LB_ε_i for
Lower_Bound_ε_interval defined in Algorithm 43, in order to
avoid heavy notations.

(b) LB_ε_i (L, 1, (1
4),−1

4) runs as follows.
(i) Since −1

4 ≥ −µ2 + ε̆2 = −1
2 + 1

4 = −1
4 , we are in the

situation starting in row 10 of Algorithm 43. Therefore,
for each v ∈ ∆(−1

4) = {−1
2 ,−

3
4 ,−

3
8}, it computes bv =

LB_ε_i(L, 1, (1
4), v).

(A) LB_ε_i(L, 1, (1
4),−3

4) returns (−3
4 ,

1
4) because −3

4 <

−1
2 = −µ2 so we are in the situation starting with

row 3 of Algorithm 43 so it calls LB_ε_p(L, 2, (),−3
4)

which returns −µ2− (−3
4) = −1

2 + 3
4 = 1

4 because we
are in the situation starting in row 1 of Algorithm 42.

(B) LB_ε_i(L, 1, (1
4),−1

2) returns (−1
2 ,

1
4) because −1

2 <

−µ2 + ε̆2 = −1
2 + 1

4 = −1
4 and −1

2 ≥ −µ2 = −1
2 so we

are in the situation starting with row 5 of Algorithm
43 and −µ2 + ε̆2 − (−1

2) = −1
2 + 1

4 + 1
2 = 1

4 .
(C) LB_ε_i(L, 1, (1

4),−3
8) returns (−3

8 ,
1
8) because −3

8 <

−µ2 + ε̆2 = −1
2 + 1

4 = −1
4 and −3

8 ≥ −µ2 = −1
2 so we

are in the situation starting with row 5 of Algorithm
43 and −µ2 + ε̆2 − (−3

8) = −1
2 + 1

4 + 3
8 = 1

8 .
(ii) It computes the minimum m of the set (65), which is, as

explained in details in Example 36, the minimum of
• 1

4 × 20−1 = 1
8 ,

• 1
4 × 21−1 = 1

4 ,
• 1

8 × 22−1 = 1
4 ,
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• 0−
(
−1

4

)
= 1

4 ,
• min{π(Ψ(−1

4)) \ {−1
4}}+ 1

4 = −1
8 + 1

4 = 1
8 .

We thus have m = 1
8 .

(iii) LB_ε_i(L, 1, (1
4),−1

4) returns (−1
4 ,

1
8).

(c) LB_ε_p(L, 1, (1
4),−1

4) returns 1
8 .

(5) Last, it runs row 20 of Algorithm 42 and, after calculations already
presented in details in Example 40, we find that LB_ε_p(L, 1, (1

4), 0)

returns 1
2 .

The latter value 1
2 is stored in ε̆1.

9.4.3. Last step of Lower_Bound_τ(L). Finally, Lower_Bound_τ(L) re-
turns

τ̆ = min

{
ε̆1, ε̆2,

1

8

}
=

1

8
.

9.5. Algorithm 61. We already computed the positive lower bound τ̆ = 1
8

on τ . We check that H = 2 and N = 8 by definition of E . Then we have

M = (n+ 1)

(⌊
(n+ 1)

N + µK
τ̆

⌋
+H

)
= 618 .

We could compute the set VM but, in practice, we can save a few calculations
by exploiting the fact that, according to Lemma 59, any element of R (and,
hence, of any Ri) is lower than or equal to max E ∪−S(L) = 8. Indeed, this
remark entails that the intersections with VM involved in Algorithm 61 for
calulating the Ri can be replaced by intersections with VM ∩ Q≤8 without
changing the result of the calculations, i.e., we have

R0 = (E ∪ −S(L)) ∩ VM = (E ∪ −S(L)) ∩ VM ∩Q≤8

and

Ri+1 =
⋃

(`α,β)∈P(L)

`−α(ψ(Ri)−β)∩VM =
⋃

(`α,β)∈P(L)

`−α(ψ(Ri)−β)∩VM∩Q≤8.

Thus, we only need to compute the set VM ∩ Q≤8, not the whole VM . Let
us now explain how one can compute the sets Vi,≤8 = Vi ∩ Q≤8. We recall
that, by definition, the (Vi)i≥0 can be computed recursively as follows:

V0 = −S(L)

and, for all i ∈ Z≥0,

Vi+1 =
⋃
v∈Vi

π(Ψ(v)).

Intersecting with Q≤8, we obtain:

(96) V0,≤8 = −S(L) ∩Q≤8 = −S(L)

and, for all i ∈ Z≥0,

(97) Vi+1,≤8 =
⋃
v∈Vi

π(Ψ(v)) ∩Q≤8.
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But, according to (25), we have, for all v ∈ Q, v = minπ(Ψ(v)). So, for any
v ∈ Vi \ Vi,≤8, we have π(Ψ(v))∩Q≤8 = ∅ and, hence, (97) can be rewritten
as follows:

(98) Vi+1,≤8 =
⋃

v∈Vi,≤8

π(Ψ(v)) ∩Q≤8.

Now, (96) and (98) allow us to recursively calculate as many Vi,≤8 as we like.
Note also that, for computing the right-hand side of (98), we only need to
compute π(Ψ(v)) for v ∈ Vi,≤8 \ Vi−1,≤8 because

Vi+1,≤8 = Vi,≤8 ∪
⋃

v∈Vi,≤8\Vi−1,≤8

π(Ψ(v)) ∩Q≤8.

Using this, we may compute VM,≤8, which has 5512 elements, in a fair time8.
We then compute

R0 = (E ∪ −S(L)) ∩ VM = E ∩ VM ∩Q≤8 = E ∩ VM,≤8

=

{
−1

2
,−1

4
,−1

8
, 0,

1

2
,
3

4
,
7

8
, 1,

3

2
,
7

4
, 2,

5

2
, 3,

7

2
, 4, 5, 6, 7, 8

}
.

Then, in order to compute R1, we first compute (the finite set)⋃
(`α,β)∈P(L)

`−α(ψ(R0)− β)

and, then, we compute its intersection with VM,≤8. We obtain

R1 = R0 ∪
{
− 1

16
,− 1

32

}
.

Iterating this process, we find R2 = R1. Thus, R = R1 is a set with 21
elements.

The next step of Algorithm 61 consists in computing a basis of CR. As
explained in the proof of Theorem 62, this amounts to solve the linear system

Fδ((fγ)γ∈R) = 0, δ ∈ ψ(R)

with ]ψ(R) = ]R = 21 equations given by (83). We may gather these
equations in a matrix whose columns are indexed by the elements of R and
whose rows are indexed by the elements of ψ(R). The coefficient of the entry
(λ, γ) of this matrix is the coefficient of zλ in

L(zγ) = z1+4γ + (z − 1)z2γ − 2zγ .

To save space, we shall not reproduce here the square matrix of this system.
After calculations, we find that the kernel of this matrix has dimension 1,
generated by some explicit (fγ)γ∈R. This means that CR has dimension 1
and is generated by

∑
γ∈R fγz

γ .
Last, Algorithm 61 returns

∑
γ∈E fγz

γ . Replacing the fγ by their explicit
values, we find (95).

8With a basic desktop computer and the computer algebra software Giac/Xcas it took us
less than a minute.
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