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A PURITY THEOREM FOR MAHLER EQUATIONS

C. FAVERJON AND J. ROQUES

ABSTRACT. The principal aim of this paper is to establish a purity theo-
rem for Mahler functions that is reminiscent of famous purity theorems
for G-functions by D. and G. Chudnovsky and for E-functions (and,
more generally, for holonomic arithmetic Gevrey series) by Y. André.
Our approach is based on a preliminary study of independent interest
of the nature of the solutions of Mahler equations. Roughly speaking,
we show that any Mahler equation admits a complete basis of solutions
formed from what we call generalized Mahler series, which are sums
involving Puiseux series, Hahn series of a very special type and solu-
tions of inhomogeneous equations of order 1 with constant coefficients;
such bases of solutions can be compared to those of differential equa-
tions given by Turrittin’s theorem. In the light of B. Adamczewski, J.
P. Bell and D. Smertnig’s recent height gap theorem, we introduce a
natural filtration on the set of generalized Mahler series according to
the arithmetic growth of the coefficients of the Puiseux series involved
in their decomposition. This filtration has 5 pieces. Our purity theorem
states that the membership of a generalized Mahler series to one of the
three largest pieces of this filtration propagates to any other generalized
Mabhler series solution of its minimal Mahler equation. We also show
that this statement does not extend to the first two pieces.
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2 C. FAVERJON AND J. ROQUES

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The primary aim of this article is to establish a purity theorem for Mahler
functions that is reminiscent of famous purity theorems for G- and E-func-
tions and, more generally, for holonomic arithmetic Gevrey series by D. and
G. Chudnovsky and Y. André respectively. Although there is no concrete
link between the latter results and those of the present article, they played a
fundamental role in the genesis of our work, so we start by briefly recalling
them.

Following Y. André in [And00]|, we say that a power series

f="> anz" € Q[[2]]

n=0

with coefficients in the field of algebraic numbers Q is an arithmetic Gevrey
series of order s € Q if there exists C' > 0 such that

- for all n € Z>g, the maximum of the moduli of the galoisian con-
juguates of b, := % is bounded by C"*1;

nls
- there exists a sequence of positive integers (d,,)n>0 such that, for all
n e Zsg, d, < C™" and d,bg, d,by, ..., d,b, are algebraic integers.

An holonomic arithmetic Gevrey series of order 0 (resp. —1) is nothing but
a G-function (resp. E-function) in the sense of C. L. Siegel [Sie29, Siel4]. By
holonomic, we mean solution of a nonzero linear differential equation with
coefficients in Q(z).

To state the purity theorem for these series, it is convenient to introduce
the differential C|[z]-algebra NGA{z}, of arithmetic Nilsson-Gevrey series of
order s. An element of NGA{z}; is by definition a C-linear combination of
terms of the form

u(z)z%log’ (2)

where a € Q, j € Z=p, and u(z) is an arithmetic Gevrey series of order s.

The following fondamental purity theorem is due to D. and G. Chudnovsky
for s = 0 in [CC85| (the proof contains a slight mistake corrected by Y.
André in [And89, Chapter VI|) and to Y. André for s # 0 in [And00| (see
also [And03]).

Theorem 1 (Y. André, D. and G. Chudnovsky). Let y be an arithmetic
Gevrey series of order s € Q or, more generally, an element of NGA{z}4
solution of a nonzero linear differential equation Wy = 0 with coefficients in
C(z). We assume U of minimal order pn. Then:

(1) if s <0, ¥ admits a full basis of solutions in NGA{z}s;

(2) if s >0, U admits a full basis of solutions of the form e“*
y; € NGA{z}s and a; € Q.

0=

y; with

Remark 2. Any linear differential equation of order p with coefficients in
C(z) — or, more generally, in C({z}) — has a basis of solutions made of
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C-linear combinations of terms of the form
u(z)z® logj(z)eQ(fW!)

where o € C, j € Zxo, u(z) is a Gevrey series and Q(X) € XC[X]. The-
orem 1 shows in particular that the fact that the differential operator under
consideration is a nonzero differential operator of minimal order annihilating
an holonomic arithmetic Gevrey series imposes severe restrictions on the a,
u(2z) and Q(X) involved in its basis of solutions.

We now come to the subject of our study, the Mahler equations. Let p > 2
be an integer. By p-Mahler equation, we mean a linear functional equation
of the form

(1) ao(2) f(2) + a1(2) f(F) + -+ + ag(2) f(27") = 0
with coefficients ag, ..., aq in the field
Ky = Q(z%) = | J Q)
k€Zxz1

of ramified rational functions such that agag # 0. A solution of such an
equation will be called a p-Mahler function. If such a solution is a power
series (resp. a Puiseux series, a Hahn series, etc.), we will say that it is a
p-Mahler power series (resp. a p-Mahler Puiseux series, a p-Mahler Hahn
series, etc.).

Although the solutions of Mahler equations are very different in nature
from those of differential equations, certain properties bring them close to
arithmetic Gevrey series. Indeed, on the one hand, it is well-known that any
p-Mabhler series f € Q[[2]] is an arithmetic Gevrey series of order 0 [Dum93,
Chap. 3, Cor.8 and Th.6] (but, be careful, if it is not rational, then f is
not holonomic [Ran92, BCR13|, and isn’t even differentially algebraic over
C(z) [ADH21]). On the other hand, the famous refinement of the Siegel-
Shidlovskii theorem due to F. Beukers in [Beu06] and reproved by Y. André
in [And14] admits a mahlerian analogue proved by P. Philippon [Phil5] and
supplemented by B. Adamczewski and the first author in [AF17|, which
brings p-Mahler functions closer to F-functions. Note that another proof
of Philippon’s result, in the spirit of [And14|, was subsequently given by L.
Nagy and T. Szamuely in [NS20| and that a third proof was given by B.
Adamczewski and the first author in [AF23]. It is properties like these that
have encouraged us to investigate a possible extension of the above purity
theorem to Mahler equations.

A natural motivation for looking at the growth properties of the coeffi-
cients of p-Mahler series or, more generally, of p-Mahler Hahn series comes
from the Bombieri-Dwork conjecture predicting that the minimal differential
equation of a G-function comes from geometry. In the light of this conjec-
ture, it is natural to ask whether a p-Mahler Hahn series whose coeflicients
have a special growth has a special nature. For results in this direction, we
refer to Section 1.3.2.
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The theory of Mahler equations is a dynamic and fast-growing research
area. Since the pioneering work of Mahler in [Mah29, Mah30a, Mah30b|, nu-
merous articles have been written on Mahler equations, which has known im-
portant recent developments; see for instance [Pel09, Ngull, Ngul2, NN12,
BCR13, BBC15, Phils, BCZ16, AB17, AF17, AF18, CDDM18, DHRIS,
Roql18, Adal9, BCCD19, SS19, ADH21, Roq21, AZ22, FP22, MNS22, ABS23,
AF23, AZ23, Pou23, AF24a, AF24b, FR24a| and the references therein, to
name but a few recent articles. We believe that the results presented in the
present paper will be useful for further work on Mahler equations.

The main results of the present paper are described in Sections 1.1 and 1.2
below. In Section 1.1, we outline our main results about the structure of the
solutions of p-Mahler equations at 0. Theorem 4, which is the outcome of
this study, shows that any p-Mahler equation has a full basis of solutions
consisting of what we call generalized p-Mahler series. This result, of inde-
pendent interest, is a necessary prerequisite for the statement and proof of
our purity theorem, to which Section 1.2 is devoted. A number of comments,
especially in connection with our forthcoming paper [FR24b|, are given in
Section 1.3.

1.1. Solving p-Mahler equations.

1.1.1. Hahn series and p-Mahler equations. Hahn series are a key ingredient
for solving p-Mahler equations of the form (1). We let 7 = Q((29)) be
the field of Hahn series with coefficients in Q and value group Q. This field

contains the field )
2= ] Q%)
k€Z=1
of Puiseux series as a subfield but it is much bigger. Roughly speaking, Hahn
series are a generalization of Puiseux series allowing arbitrary exponents of
the indeterminate as long as the set that supports them forms a well-ordered
set; we refer to Section 2 for details. The interest of the Hahn series in our
context lies in the following result: the difference field (JZ, ¢,), where ¢, is
the field automorphism of J# sending f(z) on f(zP), has a difference ring
extension (R, ¢,) with field of constants R = {f € R | ¢,(f) = f} equal
to Q such that
e for any c € @X, there exists e. € R which is not a zero divisor
satisfying ¢p(e.) = cee;
e there exists £ € R satisfying ¢, (¢) = + 1,
e any p-Mahler equation of the form (1) has a full basis' of solutions
Y1, ---,Yd € R of the form

(2) Yi = Z ficject?

(c.1)eQ” xZxo

lwe say that a p-Mahler equation of order y as “full basis” of solutions of a given form, if
it has p Q-linearly independent solutions of the given form.
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where the sum is finite and the f; . ; belong to JZ.

We refer to Section 4.1 (and, in particular, to Proposition 25) for details and
references.

1.1.2. Generalized p-Mahler series and p-Mahler equations. The first main
result of this paper — namely Theorem 4 below — gives precise informations
on the Hahn series f;.; involved in (2). It ensures that they have a very
special form: they are linear combinations with coefficients in the ring of
p-Mahler Puiseux series of specific Hahn series, denoted by {4 x q, that we
shall now introduce.

For any t € Zz1, o = (ou,...,04) € ZLo, A = (A1,..., \) € (@X)t and

a = (ay,...,a;) € Q' , we consider the Hahn series
ga)\,a(z) =
_ 9% a2 at
k1, k=1

When ¢ = 0, ZL,, (@X)t and Q. , have just one element, namely the empty
vector () and, in this case, we write £y () ()(z) = 1. In what follows, we let

A= | 28 x @) x Q%

teZ>o

be the set of possible values for the parameters (a, A, a).

Definition 3. A generalized p-Mahler series is an element of R of the form

(3) D1 fegecl

(ij)e@x XZZO
where the sum has finite support and where the f.; are Hahn series of the
following form

(4) fc,j = Z fc,j,a,k,aga,)\,a

(a,\;a)eA

where the sum has finite support and where the f.jaxa € & are p-Mahler
Puiseux series.

Theorem 4. Any p-Mahler equation of the form Q) has a full basis of
generalized p-Mahler series solutions, i.e., it has d Q-linearly independent
generalized p-Mahler series solutions vy, ...,yq € R.

In fact, we will obtain this result as a by-product of the construction of
fundamental matrices of solutions of a very specific form of p-Mahler systems,
which are reminiscent of the fundamental matrices of solutions of differential
systems given by Turrittin’s theorem; as this requires further notations, we
say no more about this result of independent interest here and refer the
reader to Section 4 and, especially, to Theorem 27.
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Note that the decomposition (3) of a generalized p-Mahler series into a
J-linear combination of the e.f/ is unique, but that this is not the case
for the decomposition (3)-(4) into a Z-linear combination of the £u x g€t
The following definition and proposition remedy this problem.

Definition 5. We will say that the decomposition (3)-(4) is standard if the
a = (ay,...,a;) involved in the support of the sum in (4) have entries in
the set Ny, of positive rational numbers whose denominators are relatively
prime with p and whose numerators are not divisible by p.

Proposition 6. Any generalized p-Mahler series has a unique standard de-
composition.

Remark 7. We will prove (see Remark 22) that the Hahn series £q 2 q are
p-Mahler Hahn series. Since the property of being a solution of a p-Mahler
equation 1s stable by sums and product, we obtain that any generalized p-
Mahler series is a solution of a p-Mahler equation.

1.2. Purity Theorem. Our purity theorem (Theorem 11; see also Theorem
14) involves growth conditions for generalized p-Mahler series inspired by the
recent paper [ABS23| by B. Adamczewski, J. P. Bell and D. Smertnig. Let
us briefly recall their main result.

1.2.1. Growth of the coefficients of p-Mahler power series. In [ABS23|, B.
Adamczewski, J. P. Bell and D. Smertnig study the asymptotic growth of
the coefficients of p-Mahler power series with coefficients in Q, as measured
by their logarithmic Weil height. Their main result is the following height
gap theorem, which shows that there are five different growth behaviors.
Theorem 8 (|JABS23, Prop. 5.2|). Any p-Mahler Puiseuz series f = Zwe@ fy27 €
P satisfies one of the following mutually exclusive properties®:

(Oh) A(fy) € O N QH(Y));

(09) A(f,) € © A Qlog? H(7)):

(OQ3) A(fy) € ©nQ(log H(7));

(Oy) A(fy) € © nQloglog H(7));

(OQ5) A(fy) e O(1).

In this result and throughout this paper, H(«) denotes the Weil height
of a € Q and () = log H () its logarithmic Weil height (see [Wal00| for
details and references). Roughly speaking, they measure the “complexity”
of the algebraic number «. For instance, when v = ¢ is a rational number,
with a,b € Z relatively prime, H(y) = max{|al,|b]}. Moreover, for any
(a4)~eq, (by)veq € RY, the notation a, = O(b,) means that there exists
C > 0 such that, for all but finitely many v € Q, we have |a,| < C|b,|
and the notation a, = 2(by) means that there exists ¢ > 0 such that, for
infinitely many v € Q, we have |a,| > ¢[b,].

~ S S

h
h

2Strictly speaking, this result is only proved for power series and for p-Mahler equations
with coefficients in Q(z), but the extension to Puiseux series and to p-Mahler equations

with coefficients in @(zi) is straightforward.
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1.2.2. Purity theorem. Theorem 8 reveals five O-growth conditions for Puiseux
series: we say that f = Z,Y 427 € & satistfies

e (On)if A(fy) = O(H(y));

o (Oy) if A(f,) = O(log? H());
o (O3) if fi(f,) = O(log H(7));

o (O4) if A(fy) = O(loglog H(7));
e () if A(f,) = O(1).

We extend these ©O-growth conditions to generalized p-Mahler series as
follows.

Definition 9. We say that a generalized p-Mahler series f satisfies (2 —O,.)
for some r € {1,2,3,4,5} if it admits a decomposition of the form (3)-(4)
such that all the Puiseuz series fejaxa satisfy (Oy).

Proposition 10. A generalized p-Mahler series f satisfies (22 — ©,.) if and
only if the Puiseux series fjaxa involved in its standard decomposition

satisfy (O,).

It is clear that, for any r € {1,..., 4}, the condition (£ —©,11) is stronger
than (& — ©,) in the sense that any generalized p-Mahler series satisfying
(& — Op41) also satisfies (&2 — ©,). Moreover, it follows from Theorem 8
that any generalized p-Mahler series satisfies (&2 — ©y). Therefore, the five
growth conditions (&2 — ©y) to (& — ©O3) induce the following filtration on
the set of generalized p-Mahler series:

{generalized p-Mahler series}
= {generalized p-Mahler series satisfying (& — ©y)}
2 {generalized p-Mahler series satisfying (&2 — ©s)}
2 {generalized p-Mahler series satisfying (22 — ©3)}
2 {generalized p-Mahler series satisfying (&2 — ©y)}
2 {generalized p-Mahler series satisfying (&2 — ©s)}.

This filtration has 5 pieces. We are now ready to state our purity theorem
guarantying that the membership of a generalized p-Mahler series to one of
the three largest pieces of this filtration propagates to any other generalized
Mabhler series solution of its minimal Mahler equation.

Theorem 11 (Purity Theorem). Let f be a generalized p-Mahler series
satisfying (£ — ©,) for some r € {1,2,3}. Then, the minimal p-Mahler
equation of f over Ky has a full basis of generalized p-Mahler series solutions
satisfying (22 — O,).

Remark 12. 1) Considering the minimal p-Mahler equation is of course
essential for the conclusions of Theorem 11 to hold. The constant function
1, which satisfies (22 — ©3), is solution of the equation

(z— 22 = 223)y(2) + (=1 — 2z + 22 + 223 + 22y (2} + (1 — 22Y)y(2h) = 0.
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Of course, this equation is not minimal with respect to 1. The rational func-
1

tion 15 1is also solution of this equation but it is does not satisfy (& — O3z).

2) Theorem 11 do not extend to r € {4,5}. See Section 7 for counterex-
amples.

3) In view of Theorem 8, it would be natural to consider, for any r €
{1,2,3,4,5}, the growth condition (£ —OX,.) defined as follows: we say that
a generalized p-Mahler series f satisfies (P — OQ,.) if it satisfies (&2 — ©,)
and if at least one of the Puiseuz series fjaxa involved in its standard
decomposition satisfies (OQ,.). We emphasize that it is not possible to replace

the condition (& — ©O,) by (£ — OQ,.) in Theorem 11. Indeed, the equation
(1—22)y(2) + (=14 22 — 22 + 32° = 32Ny (2?) + (22 = 322 + 32)y(z?) =0
18 the minimal 2-Mahler equation associated with some Laurent series

— 2 3246224625421 4212746020 4+9927+ 23425440827+ 870210+ O (2 1)

satisfying (22 — OQ1). Another solution is the constant function 1, which
obviously does not satisfy (2 — O8y).

1.3. Comments in connection with [FR24b]. In this Section, we gather
remarks related to our forthcoming paper [FR24b| where we will study the
growth of the coefficients of p-Mahler Hahn series.

1.3.1. Purity theorem in terms of Hahn series. Instead of considering the
generalized p-Mahler series as &-linear combinations of the {q A,aecéj as we
did in Definition 9, we can see them as .#-linear combinations of the e.¢’
as in (3). This point of view leads to the following alternative extension of
the growth conditions (©1) to (Os) to generalized p-Mahler series and to an
alternative purity theorem:.

Definition 13. We say that a generalized p-Mahler series f satisfies ( —
©,) for some r € {1,2,3,4,5} if the Hahn series f.; involved in the decom-
position (3) satisfy (the obvious extension to Hahn series of ) (©O,.).

The corresponding purity theorem reads as follows.

Theorem 14 (Purity Theorem, Hahn series version). Let f be a generalized
p-Mahler series satisfying (€ —O,.) for somer € {1,2,3}. Then, the minimal
p-Mahler equation of f over Koy has a full basis of generalized p-Mahler series
solutions satisfying (€ — ©,).

This result will be proved in [FR24b]; actually, we will prove that Theorem
11 and Theorem 14 are equivalent, i.e., that conditions (& — ©,) and (" —
O, ) are equivalent for r € {1, 2, 3}.

1.3.2. Regularity, automaticity and growth. In [FR24b], inspired by the work
of K. S. Kedlaya in [Ked17], we introduce notions of quasi-p-regular and
quasi-p-automatic Hahn series. These notions are extensions to Hahn se-
ries of the classical notions of p-regular and p-automatic series [AS03]. In
[FR24b|, we characterize the quasi-p-regular and quasi-p-automatic Hahn
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series among the p-Mahler Hahn series in terms of the growth of their coef-
ficients, generalizing results from [ABS23] relative to p-Mahler power series;
we prove that, for any p-Mahler Hahn series f, we have:

e f is quasi-p-regular if and only if f satisfies (S — ©O3);

e f is quasi-p-automatic if and only if f satisfies (7 — Os).

Therefore, the case r = 3 of Theorem 14 implies:

Corollary 15. The minimal p-Mahler equation of a quasi-p-reqular Hahn
series has a full basis of solutions made of Q-linear combinations of terms of

the form fe 7 where f is a quasi-p-reqular Hahn series, ¢ € @X and j € Z>g.

1.3.3. Growth of the coefficients of p-Mahler Hahn series. In [FR24b]|, we
establish a height gap theorem extending Theorem 8 to p-Mahler Hahn series.

1.4. Notations. In this Section, we list the main notations used in this
paper.

We let Z be the ring of relative integers, Q be the field of rational numbers,
R be the field of real numbers and C be the field of complex numbers. We
let Q be the algebraic closure of Q in C.

Given a subset F of R and § € R, we let E5s denote the set of elements
of E greater than or equal to §. The sets E-s, F<s and E_s are defined in
a similar way.

Given a ring R, we let R* denote the multiplicative group of units of R.

We let N,y denote the set of positive rational numbers whose denomina-
tors are relatively prime with p and whose numerators are not divisible by p.
Note that, for any positive rational number v € Q~, there exists an unique
integer k € Z such that p*y e N(

p)*
We set
— X
A= U Zio x (@) x QL
teZ=o0
and
(5) As = | ZLo x @) x N,
teZ;o

We let Q[[z]] be the ring of power series with coefficients in Q. We let
Q((2)) be the fraction field of Q[[z]], that is, the field of Laurent series over
Q. Welet Ky = keZon @(z%) denote the field of ramified rational functions
with algebraic coefficients, &? denote the field of Puiseux series over Q and

2 denote the field of Hahn series over Q and value group Q. We have the
following tower of fields:

Q) cKypc P c .
For any F' = > o Fyz7 € My(), we set
(6) F'-FR, F0= > Ez, F'= ) F2,

v€Q<o0 7€Q>0
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so that
F=F<+F'+F°
The notation (R refers to a difference ring extension of ¢ described in
Section 4.1

1.5. Organization of the paper. In Section 2, we recall the definition of
the field of Hahn series. In Section 3, we recall the dictionary between Mahler
equations, systems and modules. Section 4 is devoted to the construction
of a fundamental matrix of solutions at 0 of a given p-Mahler system. Our
main result with this respect is Theorem 27. It is the cornerstone of the
present paper. Theorem 4 is deduced from Theorem 27 at the end of Section
4. In Section 5, we establish the properties of the standard decomposition for
generalized p-Mahler series stated in the introduction, namely Propositions 6
and 10. One may skip this Section at first reading. Section 6 is devoted to
the proof of our purity theorem, Theorem 11. In Section 7, we give an
example showing that our purity theorem cannot be extended to conditions

(P — ©Oy) or (2 — O5).

Acknowledgements. This work grew out of a question posed by Boris
Adamczewski, and benefited from discussions we had with him throughout
the genesis of this article. Our thanks go to him. The work of the second
author was supported by the ANR De rerum natura project, grant ANR-19-
CE40-0018 of the French Agence Nationale de la Recherche.

2. HAHN SERIES
2.1. Definitions. We denote by
A =TQ((z9))

the field of Hahn series over Q and with value group Q. An element of J#
. —Q
is an (fy)yeq € Q~ whose support

SuPP((fw)'yeQ) ={veQ| Iy # 0}

is well-ordered (i.e., any nonempty subset of supp(f) has a least element)
with respect to the restriction to supp((fy),eq) of the usual order on Q. An
element (fy),eq of A is usually (and will be) denoted by

F=2 57
v€Q

The sum and product of two elements f = Z'ye(@ 427 and g = Zye@ gy27 of
J€ are given by

f+g= Z(f’y"‘g'y)z’y
v€Q

f.g = Z Z f'y’g'y” 27,

veQ \v'++v"=v

and
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(The fact that the supports of f and g are well-ordered implies that there
are only finitely many (7/,7"”) € Q x Q such that 7' ++” = vy and f,.g,» # 0,
so the sums ZV, 1=y Jy1 Gy are meaningful.)

The field 5 of Hahn series contains the field &2 of Puiseux series as a
subfield but it is much bigger. A typical example of Hahn series which is not
a Puiseux series is given by

_L

0,11 = Z z .

k=0

We let #<0 be the set made of the f € . such that supp(f) < Q.
We say that a family (f;);er of elements of .77 is summable if the following
properties are satisfied :

o the set | J;.; supp(fi) is well-ordered,;
o for any v € Q, the set
{iel|~esupp(fi)}
is finite.

In this case, we define

555 ) e

i€l el \veQ

where f; = Zwe@ finy?7. We have the following elementary lemma; see
[Roq24, Lemma 31].

Lemma 16. For any f € <0, the family (¢§(f))k<—1 of elements of
15 summable.

2.2. The Hahn series {, » o and the Q-vector spaces V,. We shall now
focus our attention on the Hahn series {4 » q introduced in Section 1.1.2 and
on some related Q-vector spaces that will play an essential role in the present
paper.

For any t € Zz1, o0 = (ov,...,a¢) € Zhy, XA = (A1,..., ) € (@X)t and

a=(ai,...,a;) € Q' , we consider the Hahn series
faral(?) =
_a__ap at
k1, k=1

To prove that this definition is legitimate and indeed gives a Hahn series,
we have to prove that, for any v € Q, there are at most finitely many
(k1,..., k) € ZL, such that v = - - pkfiikz — = W and
that the support of {n (%) is well-ordered; this follows from the following
lemma.

Lemma 17. For any t € Z>1 and a = (a1, ...,a;) € QL,, we have :
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e the set
ai as ag t
{_pkl_p’flJr’f?_m_])kl*k?*'”*kf | (klv"‘vkt)ezkl}

is well-ordered;
o for any vy € Q, there are at most finitely many (k1,..., k) € Zt>1 such

that
al ag at

- Copkt o phithe T phithatothe
Proof. We argue by induction on t € Z>1.
Base case t = 1. Lemma 17 is obvious for ¢t = 1.

Inductive step t — t + 1. We assume that Lemma 17 holds true for some

t € Z=1. We want to prove that, for any a = (a1,...,a¢41) € Qtjol,
(i) the set
B S H . . S t+1
{ pk1 pk1+k2 pk1+k2+-~+kt+1 ’ (kl’ B kt+1) € Zzl }
is well-ordered;
(ii) for any v € Q, there are at most finitely many (k1,...,ki+1) € Zt;ll
such that
& _® %41
v= pkl pk1+k2 pk1+k2+'"+kt+1 :
By induction hypothesis (applied to (ag, ..., a:+1) € QL,),
ag at4]

—a1— % “Rg Tt ka1
f: E 2 ph2 pr2 TR

is a well-defined element of /# <. Lemma 16 guaranties that ( ’;1( ) ki<—1
is summable; this means exactly that :

(iii) the set

| supp(sf () =

k1€Z>1

al as at+1 t+1
{—pkl—pkl% ———— pRLRa R | (B1,-. ki) € 225

is well-ordered;
(iv) for any v € Q, there are at most finitely many k; € Z>1 such that

v € supp (¢ (f)) =

a1 as at41 t
{—pkl—pklm—'“—m | (ks skitp1) € Zzq -

Now, (iii) ensures that (i) is true. Moreover, (iv) combined with the fact that,
by induction, for any ki € Z>1, there are finitely many (ka, ..., k1) € ZL,
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such that v = —[% - Iﬁ — = W, implies that (ii) is true.
This concludes the induction. |

We extend the notation £q x ¢ to the case t = 0 as follows: Zgo = (@x )0 =
Q%, = {()} is the set with one element () and we set

£0,0,0(2) = 1.

For any s € Z=q, we consider the following Q-vector space

), = Span@ <{z_7§(),(),() | 7€ Qso}

> U {Zivga,)\,a ‘ Y E Q207 (avAv a) € Z;O x (@X)t x Qt>0}>

te{l,...,s}

Of course, (Vs) seZs 18 a non decreasing sequence of Q-vector spaces; its limit
is denoted by

vo=

SGZ;O
(7) = Spang ({2_7&),0,() | 7 € Qso}
U U 57 na | 7€ Qs0, (@, A, a) € ZE x (@Q7)" % @io})-
tel=1

We will now state and prove a few technical lemmas about the Hahn series
£ara and the Q-vector spaces Vs that will be used later in the paper. The
reader can ignore them on first reading and return to them when they are
used in later demonstrations.

Lemma 18. The map ¢, : A — H induces a Q-linear automorphism of
Us.

Proof. Follows straightforwardly from the equality
QZ)P(fa,&a(Z')) = 6&,>\7pa(z)'

Lemma 19. For any ce @X and o € Z=g, the Q-linear map
%<0 N %<0
ho— Y kcFer(n)
k<—1
is well-defined and sends Vs in Vsi1.
Proof. The fact that this map is well-defined follows immediately from Lem-

ma 16. Its @;hnearity is obvious. It remains to prove that this map sends Vs
in Vs11. By Q-linearity, it is sufficient to consider the case h = 2774 A o With

a=(ar,...,a0) €Zo, A= (Aiy...,\) € (@) and a = (a1, ...,a;) € QL
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for some t € {0,...,s} and v € Q¢ (resp. 7€ Qsq) if t =1 (resp. t = 0). If
t =0, we have

_
2, Koz = (=R = (<)) ) () (2) € 1 © o
k<—1 k=1

as claimed. If ¢t = 1, we have

D k(2 e nal(2)

k<-1

. 1
= Z (_ko)ac_koz pk0 éa,}\,a(zpko)

koZl

_ fe 7,001 at —ko k1 ki+-+kt
=(-1) Z Z kghyt kg tem TN - N
ko=1k1,... k=1

Y

a

) R 2 —
X z PO pFotkL pRothitka

_ at
PROFRI TRyt ¥k

ko
=(-1)" Z kﬁyk?l e k‘f‘t # )\11<:0+k1 o /\fo+k1+"'+kt
OV RER )‘t
k‘o,kl,...,k‘t21
~

a

1 —
ko pk0+k1 pk0+k1+k2

— —— at
X 2 pk0+k1 +ko+-+kt

= (_1)a§ﬁ,7,be Vst1
with B8 = (a,aq,...,q4), T = (ﬁ,)\l,...,)\a and b = (v,a1,...,a¢).
O

Lemma 20. For any s,s' € Z=q and any (h(z),h'(2)) € Vs x Uy, we have
h(z)h (2) € Vsy -

Proof. We first note that

(8) s =Spang ({z7€.0.0 | 7€ Qo)

e U {zi’yga,)\,a | 7 € Qx0, (e, A, a) € ZtZO x (@x)t % QI;O})

te{l,...,s}

where

aj ag at

Sarna(2) = DL KT RFOAPAR N SRR TN e

1<k <<kt

with the convention g()’(),() (z) = 1. Indeed, (8) follows immediately from the
following facts:
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e any {a A q IS @ Q-linear combinaison of certain o' na With o' € tho
as the following formula clearly shows:

(9) fanalz) =

ay
2 ]{7?1 O ktatA]lfl)\gl"er L. /\f1+"~+ktz_pT1_pk1+k2 B

— at
pk1+k2+'“+kt

ki1,....ke=1
il I %1 %2 .. at
[e% 1 ! !
= Z (2 = 10)* o (= L) MANTAS - NPz Pt 22 plt
I<lhi <<l

e any {q A q 1S @ Q-linear combinaison of certain £a' 2\ e With o' € tho
as the following formula clearly shows:

Eanal(z) = R R TR T,
(10) &aralz) Z kit -k )\]fl )\SQ )\ftz pF1 pk2 ke
1<ki <<k
= Z li“l (ll + l2)a2 - (ll 4+t lt)at)\lll)\l21+l2 o )\il_;_..._,_lt
ll,..‘,ltZI

__ a3
REE=D

Y1 e at
N pll pl1+“'+lt .
Thus, it is sufficient to prove that, for any ¢,t' € Z1, for any a € Zt>07
—t ’ —t ’
AeQ and a € QL for any o € ZLj, X' € Q and a’ € QL,, we have
Sana(2)éa 2 ar(2) € Viyp. We prove this in the case t = ' = 2; the general
case is similar but requires unpleasant notations. We have

(11) ga,)\,a(z)ga’,x,a’ (Z)

ay a2 | a’2

1<ki<ko
1<k <kf,

But, this sum can be decomposed as follows:

12) > = > + > + >

1<k <kg 1<ki<ko<ki<kl, 1<ki<k|<kao<k) 1<ki<k|<kl<ko
1<k) <k,

(13) + > + > + >

1<K <ki<ko<kl 1<ki<ki<kh<ks 1<K|<ki<ki<ko

(14) + > + > + >

1Sk1:k,1<k2<k’,2 1<k21:k/1<k/2<k2 1Ski<k’1=k”2<k‘2

(15) + > + > + >

1Sk1<k‘2=k"1<k’,2 1<k51<k:/1<k2:k/2 1Sk‘,1<k’1<k’2:k3/2

(16) + >

1Sk'/1=k‘1 <k‘2=k”2
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Each sum in (the right hand side of) (12) and (13) is equal to g,@%b for some
BeZiy pe @4 and b e Q%,. Each sum in (14) and (15) is equal to 557“7,,
for some B € Z2, p € @3 and b € Q3. The sum in (16) is equal to Eﬁ%b for
some 3 € ZQZO, e @2 and b e Q%,. Hence, (11) is in ¥4, as expected. O

Lemma 21. For every jeZ, a € 2%, A€ Q° andac Q% ,, we have

(17) ga,)\,a(zpj> = (Al T )\s)jga,}\,a(z)
+ Z pa’,)\’,a/(z)ga/,)\’,a’(z)

1 —s .
’€{0,...,01 =1} xZL 5" N eQ ,a’eQs

+ Z pa’,)\’,a’(z)ga’,)\’,a’(z)

,,,,,

for some pos 1 or(2) € =0 = @[z_i]d). Moreover, ifa € 22y and j € Zx1,
then we have a decomposition of the form (17) such that the pos xr q/(2) belong

to Q[z71]=° and such that the a’ involved in the support of the sums in (17)
have entries in Zg.

Proof. Let us first prove the result for j = 1. Let A\g = A1 --- 5. We have

éa,)\,a(zp)

-4 .. @
e D I L Y o R
k120,k2,...,ks>1

a1 aj a
= 0 (V)T Mgl abh TR
2

i=0 K, ke >1
az as
—a1— o ot Ths
+Xo Z kg2 k?s)\é‘? . )\l;ng +hs k2 2T TFs
ko,....ks=1
and, hence,
éa)\,a(zp) — A1 )\sga,)\,a(z)
a;—1 a
1 —a
= o Z ( i )5(1',0(27...,0&3))\@ + Xz " Eprp
=0

where B8 = (ag,...,a5), T = (A2,...,As) and b = (ag,...,as). The latter
expression has the desired form.

The case of an arbitrary j € Z> follows from an easy induction using the
particular case j = 1.
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We now consider the case j = —1. We have
p—l
fa)\,a(z )
al s
_ /\al Z (ky — 1)a1k§¥2 . kas)\llﬂ cooNRL ks TR T pk1+k;+---+ks
S S

k1=22ka,....ks=>1

N S E ____as
= Z Vi Z kikgz t k?s}\llcl s )\’;1+"'+ksz pk1 pF1tka+-+Fks
=0 kl?"'7kt>1

N —a_ —_—— as
- Z ViAo Z k‘QaQ ce k‘;‘S)\’;? .- ~)\]§2+"'+ksz P photl PRt TFRs 1
=0 k27'”7kt21
where v; = A\g ' (—1)i" (“1). Hence

1

ga,k,a(zp_ ) - (Al te )\s)ilé‘a,)\,a(z)

ap—1 aq ay
= Z Vig(i,az,...,as),)\,a - Z 72')\02 P gﬂ,r,b
=0 =0

where B = (ag2,...,a5), T = (A2,...,As) and b = (a2/p,...,as/p). The
latter expression has the desired form.

The case of an arbitrary j € Z<_1 follows from an easy induction using
the particular case j = —1. O

Remark 22. [t is easily seen that, if f is a p-Mahler Hahn series and if g
is a Hahn series such that g — app(g) = f for some a € Ky, then g is a p-
Mahler Hahn series as well. Using this fact and the case j = 1 of Lemma 21,
one can prove by induction on s and on «y (with the notations of loc. cit.)
that the {a x.a are p-Mahler Hahn series.

3. EQUATIONS, SYSTEMS AND MODULES

We recall that we let
— 1 — 1
Ky = Q(z%) = ] Q(z¥)

denote the field of ramified rational functions with coefficients in Q. We
consider the field automorphism

¢p Ko — Ky
f(z) — f(&).

The pair (K, ¢p) is a difference field. We let (/K1) be a difference field
extension of (Ky,¢p), i.e., K is a field extension of Ky, and ¢ is a field
automorphism of K extending ¢,. Here are some examples:

o K =Kuy; o

e K = & the field of Puiseux series over Q;

e K = J the field of Hahn series over Q with value group Q;
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endowed with the natural extension of ¢, still denoted by ¢, and given, for
any f = Z»ye@ f7z7 € Kv by

op(f) = 3 foa.
7eQ
In what follows, we will often drop ¢, out of our notations, e.g., we will

simply speak of the difference field extension K of Ky, instead of the differ-
ence field extension (K, ) of (Ku, ¢p).

3.1. Equations. By p-Mahler equation over K, we mean an equation of the
form

(18) aof + a1¢p(f) + - + aadl(f) = 0

with ag,...,aq € K and agag # 0.

3.2. Systems. By p-Mahler system over K, we mean a system of the form
¢p(F ) = AF

with A € GLg(K).

We say that two systems ¢,(F) = AF and ¢,(F) = BF with A,B €
GL4(K) are K-equivalent if there exists F' € GLg4(K) such that ¢,(F)A =
BF. Such an F' is called a gauge transformation.

3.3. From equations to systems. Sometimes we will start with an equa-
tion, but it will be more convenient to work with a system. We recall that
any p-Mahler equation can be converted into a p-Mahler system as follows:
the equation (18) is equivalent to the system

(19) 6(F) = AF
where
; 0 1 0 0
bo(f 0 0 1
F = p:( ) and A = ) . 0
: 0 0 A 0 1
¢§l(f) _a@ _a ., .., _%-
aq aq ad

3.4. Modules. We denote by
D = Kby, b ")

the Ore algebra of noncommutative Laurent polynomials with coefficients in
K such that, for all f € K,

¢pf = ¢p(f)¢p-
A left Dg-module of finite length will be called a p-Mahler module (over
K). Note that a left D x-module has finite length if and only if the K-vector
space obtained by restriction of scalars has finite dimension; by definition,
the rank of a p-Mahler module is its dimension as a K-vector space.
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Given two p-Mahler modules M and N, the notation M =~ N means that
M and N are isomorphic as left @ g-modules.

3.5. From systems to modules and vice-versa. It is sometimes useful to
work with p-Mahler modules instead of p-Mahler systems and vice-versa. Let
us briefly recall the correspondence between p-Mahler systems and p-Mahler
modules.

One can associate to any p-Mahler system

(20) Pp(Y) = AY

with A € GL4(K) a p-Mahler module My as follows. We consider the map
d,4: K4 — K9 defined by

D4(m) = Agp(m)

(here ¢, acts component-wise on the elements of K¢ seen as column vectors).
The p-Mahler module M 4 is then defined as follows: the underlying abelian
group is K¢ (its elements being seen as column vectors) and the action of
L= Zaigbfg € Dx on m € My is given by

Lm = (Z aigb;) m = Zaiq)%(m).

Conversely, we can attach to any p-Mahler module M, a p-Mahler system
via the choice of a K-basis B = (e1,...,eq) of M: the p-Mahler system
associated with M, with respect to B, is ¢,(Y) = AY where A € GLy(K)
represents the action of ¢, on B (i.e., the jth column of A represents ¢, (e;)
in the basis B). We have M >~ My4.

It is easily seen that two p-Mahler systems ¢,(Y) = AY and ¢,(Y) = BY
with A, B € GLy(K) are K-equivalent, i.e., that there exists F € GLy(K)
such that ¢,(F)A = BF, if and only if the corresponding p-Mahler modules
M4 and Mp are isomorphic.

Last, we recall the following classical result, known as the cyclic vector
lemma, ensuring that any Mahler module “comes form” an equation.

Proposition 23. For any p-Mahler module M, there exists L € Dg such
that M = D /D L.

For a proof, see for instance [HS99, Theorem B.2].
4. FUNDAMENTAL MATRICES OF SOLUTIONS OF MAHLER SYSTEMS AND
PROOF OF THEOREM 4
In this Section, we first show that any p-Mahler system
(21) bp(Y) = AY
with A € GL4(Z?) admits a fundamental matrix of solutions of the form

Yo = Fec
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where F is an invertible d x d matrix with coefficients in % and where e¢
is an invertible d x d matrix with coefficients in a certain difference ring
extension R of 7 satisfying

¢p(60) = Cec

for some C € GL4(Q). The principal aim of the remainder of this Section is
to study in greater detail the nature of F. Our main results with this respect,
namely Theorem 27 and Theorem 29, provide us with a decomposition of the
form F' = F1 Fy where F} € GLg(Z?) and where Fy € GL4(V) satisfy certain
nice properties. These results will be of great importance for the proofs of
the main results of the present paper.

The difference ring extension R of 5 and the matrix ec alluded to above
are built in Section 4.1. Theorems 27 and 29 are stated in Section 4.2.
The remainder of Section 4 is devoted to the proofs of these results and,
eventually, to the proof of Theorem 4.

4.1. A fundamental matrix of solutions of the form Yy = Fec. Our
first objective is to construct, for any C' € GL4(Q), a matrix ec satisfying
¢plec) = Cec. In order to do so, we first need to introduce a certain

difference ring extension R of J7.

4.1.1. The difference ring R. In what follows, we let R be a difference ring
extension of s with field of constants QQ such that:
e there exists £ € R satisfying ¢, (¢) = + 1,
e for any c € @X, there exists e, € R, which is not a zero divisor,
satisfying ¢p(e.) = cec.
Such a ring R exists. Indeed, let (X.) —x and Y be indeterminates over

ceQ
A, and consider the quotient ring

R = H(Xe) g Y1/

ceQ™?
of the polynomial ring %[(Xc)ce@x , Y] by its ideal I generated by {X. Xy —
Xea | e,de Q" } U {X1 —1}. Let e, (resp. £) be the image of X, (resp. Y)
in R, so that

R = (ec) ?].

Q™
We endow R with its unique ring automorphism ¢, extending ¢, : S —
and such that

Vee Q7. dplee) = ceq and ¢p(€) = £+ 1.

Then, (R, ¢p) is a difference ring extension of (¢, ¢,,) with field of constants
Q. We omit the proof of this assertion as it is entirely similar to the proof
of the second assertion of [Roql8, Theorem 35].
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4.1.2. Definition of ec. We are now ready to construct a matrix e satisfying
oplec) = Cec.

Lemma 24. For any C € GL4(Q), there exists ec € Mg(R) such that
(22) dp(ec) = Cec,

whose determinant det ec is not a zero divisor of R and whose entries are
Q-linear combinaisons of elements of the form e.? with ¢ € Spec(C) and

jed{0,...,d—1}.

Proof. Let C' = UD be the multiplicative Dunford-Jordan decomposition of
the matrix C"

e De GLd(@) is semisimple,
e U € GLy(Q) is unipotent,
e and UD = DU.

We recall that D and U belong to Q[C]. We set

g[k’] _ (i) _ é(l—l)~~l;:(!£—k+1) f ke 2207
0 if keZe .

It follows from the equality ¢,(¢) = £+ 1 that
¢p( 1) = (¥ 4 glE=1]
and that (the finite sum)

ey = Z K U Id € Md(m)

k=0
satisfies
¢plev) = Uey.
Note that ey belongs to R[U] < R[C] and that det ey = 1.
Moreover, we consider P € GLy(Q) and c1,...,cq € Q" such that
D = Pdiag(cy,...,cq) Pt
and we set

ep = Pdiag(ec,, ..., eq, )P~ € Mg(R).

This ep is independent of P and satisfies

gb(ep) = DeD.

Moreover, detep = e, - - - e, is not a zero divisor.
Since DU = UD, the matrices ey and D commute and it follows from
what precedes that

ec = eyep
has the required properties. O
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4.1.3. Existence of Yy = Fec. According to [Roq21, Theorem 2], there exist

C € GL4(Q) and F € GL4(5) such that
(23) AF = ¢,(F)C.

Considering the matrix ec given by Lemma 24 and combining (22) and (23),
we obtain that
Yy = Fec € Mg(R)
satisfies
¢p(Yo) = AYp

and that det Yy = det F' det e is not a zero divisor of R.
Note the following consequence in terms of p-Mahler equations.

Proposition 25. Any p-Mahler equation of the form (1) has d Q-linearly
independent solutions yi, . ..,yq of the form (2).

Proof. Indeed, the system ¢,(Y) = AY associated to this equation (as in
Section 3.3) has a fundamental matrix of solutions of the form Yy = Fec €
Mg4(®R). The d elements of the first line of Yy are Q-linearly independent
solutions of equation (1) of the expected form. O

The aim of what follows is to obtain more information on F'. This is
achieved with Theorem 27 and Theorem 29 below. In order to state with
exactness these results, we first need to introduce some notation.

4.2. Nature of the coefficients of F'. Forany s € Z>; andr = (r1,...,75) €
7% such that

r+--+rs=d,
we let 20, be the set of matrices of the form

I,

(24) F= 0 € GLy(#)

such that
Fj e My, (Vi)

Lemma 26. U, is a subgroup of GLg(5).

Proof. Of course, U, contains I;. The fact that 2, is invariant by product
follows straightforwardly from Lemma 20 and from the fact that the sets V;_;
are Q-vector spaces. It remains to prove that 2, is invariant by inversion.
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Consider F' € U,.. The (additive) Dunford-Jordan decomposition of F' is
given by F' = I; + N where

0r,

with N j € My, (Vj—;). Whence the result. O

The rest of Section 4 is devoted to the proof of the following results.

Theorem 27. The Mahler system (21) has a fundamental matriz of solu-
tions of the form

F1F2€C
where
o Fl e GLd(@);
e Iy € Y, for some s € Zz1 and v = (r1,...,rs) € Z, such that

Pt = d

o C e GL4(Q) is a block upper triangular matriz of the form

A1 *
C = .
0 A

for some (Ay,..., As) € GL, (Q) x - -+ x GL,_(Q).

Moreover, we can choose Fi and Fy in such a way that

F1(2P)O(z) = A(2)Fi(2) and F»(2")C = O(z)Fa(z)



24 C. FAVERJON AND J. ROQUES

for some block upper triangular matriz of the form
Ay *

(25) 0=

0 Ag

with coefficients in | J.,cq_, Q[27"] and constant term C.

Remark 28. One can always choose s = d and ri = -+ = rqg = 1 in
Theorem 27 (follows from Theorem 27 itself by triangularizing the matrices
A;). However, we have stated Theorem 27 in this form for the following
reason: if L is a Mahler operator associated to the system (21) by the cyclic
vector lemma, then the proof of Theorem 27 shows that we can take for
r1,...,Ts the multiplicities of the slopes of L. This more precise information
will not be exploited in this paper but could be of interest for other purposes.

Theorem 29. Assume that (21) has a fundamental matriz of solutions of

the form F/GC/ with F' € GLd(%) and C' € GLd(Q) Let Fl,FQ,C,@ be

given by Theorem 27. Then, there exists a matriz R € GLg(Q) such that
e C'= R7ICR,
o I = F1F2/, with F2/ =FRe GLd(Ud_l)
o F5(2F)C7 = O(2) F3(2)

The proof of Theorem 27 is given in Section 4.6. It rests on intermediate
results given in the next three Sections. The proof of Theorem 29 is given
in Section 4.7.

4.3. First step of the proof of Theorem 27: triangularization by
blocks. In this section and in the rest of the paper, we will use the following
notation: for any A, F' € GLg(H), we set

F[A] := ¢p(F)AF~.

The first step of our proof of Theorem 27 consists in proving the following
result.

Proposition 30. Consider a Mahler system
with A € GLq(Z?). There exist s € Zz1, v = (r1,...,75) € Z%, such that

ri+4rs=d, (A1,...,As) € GL, (Q) x - -+ x GL,_(Q) and F € GL4(2)
such that

Ay *
(27) FlA] - 5
0 A,
Remark 31. One can always choose s = d andry = --- =rq = 1. However,

we have stated Theorem 30 in this form for the following reason: if L is a
Mahler operator associated to the system (26), then the proof of Proposition
30 shows that we can take for ri,...,rs the multiplicities of the slopes of L.
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The proof of Proposition 30 is given in Section 4.3.3 below. Actually,
we will not prove this result directly but a reformulation of it in terms of
p-Mahler modules given in Proposition 32.

4.3.1. Reformulation of Proposition 30 in terms of p-Mahler modules. Propo-
sition 30 can be reformulated in terms of p-Mahler modules as follows:

Proposition 32. Let M be a p-Mahler module over & of rank d = 1. There
exist s € Zz1 and v = (r1,...,7r5) € ZLy such that ry +--- + 715 = d and a
filtration

{0} =MycMyc---cMy=M
by p-Mahler sub-modules of M such that, for all i€ {0,...,s — 1},

M1/ M; = My,

for some A; € GL,,(Q).

Let us explain why this result is equivalent to Proposition 30.

Let us first assume that Proposition 30 is true. Let M be a p-Mahler
module over & of rank d > 1. As recalled in (and with the notations of)
Section 3, there exists A € GL4(4?) such that M =~ M 4. By Proposition 30,
M =~ Mp for some block upper triangular matrix B € GLg4(?) of the form
(27). Of course, the existence of a filtration of M as in Proposition 32 is
equivalent to the existence of a similar filtration for Mp and it is clear that
Mp has such a filtration: if (e,...,eq) is the canonical basis of 2% then

{0} = NO c N1 = (—B;;l:lgzek = N2 = @21:1T296k e

e Ns _ @leﬁ’r?‘i’“"i’ﬁs gzek — MB

is a filtration by submodules of Mpg such that
Niy1/N; = My,

for all i € {0,...,s—1}. This shows that Proposition 30 implies Proposition
32.

Conversely, assume that Proposition 32 is true. Let A € GL4(4?) and con-
sider the p-Mahler module M 4. By Proposition 32, there exists a filtration

{0} =Noc Nyc---c Ny =My
by submodules of M4 of rank r; such that, for all i € {0,...,s — 1},
Nit1/N; = My,

for some A; € GL,,(Q). Let B = (e1,...,eq) be a basis of M such that, for
allie{1,...,s}, (e1,...,€r,4..4r,) is a basis of N; and such that the action
of ¢p on N;y1/Nj is represented in the basis ey, 41 + Ny, ..., e, + N; by
A;. Then, the p-Mahler system ¢,Y = BY associated to M with respect to
the basis B (see Section 3) has the form (27). Since the p-Mahler systems
¢pY = AY and ¢,Y = BY are P-equivalent, this yields the desired result.
This shows that Proposition 32 implies Proposition 30.
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This concludes the proof of the equivalence between Propositions 30 and
32.

We will prove Proposition 32 (and, hence, Proposition 30) in Section 4.3.3.
This proof will rest on a factorization property of p-Mahler operators given
in the next section.

4.3.2. Factorization of p-Mahler operators. Consider a p-Mahler operator
(28) L= adaﬁg + ad_1¢g_1 +--F+aeEDyp

with coefficients ag, ..., aq € & such that agaq # 0. We let

e 1 < --- < ug be the slopes of L with respective multiplicities
T1y...,Ts;

® Cily.. -y Cip; € @X be the exponents (repeated with multiplicities) of
L attached to the slope ;.

See [Roq24, Section 4| for these notions. For any f = > .o fy27 € 7, we
let val, f = minsupp f € Q U {+00} denote the valuation of f and, if f # 0,
cld; f = fva, y € Q\{0} denote the coefficient of least degree.

Proposition 33. The operator L has a factorization of the form
L=alLs -1y

where

e a€ P* is such that val, a = val, agp;

o cld.a = []{ [T} (—ciy) 7t eldz ag;
e the L; are given by

Li = (2 p — i hiy - (2" dp — cin)hiy
for some h; j € > with val, h; ; =0, cld, h; ; = 1 and
vi=(p— D" (g — i) o+ P (g2 — ) + ).

Proof. This result is proved in [Roq24, Proposition 15| over ¢ instead of
Z; the proof in the present case is entirely similar. ([

4.3.3. Proof of Proposition 32. According to the cyclic vector lemma (Propo-
sition 23), there exists L € D4 such that M =~ D4 /D L. The factorization

L=alLs - 14
given by Proposition 33 induces a filtration
{0y =MycMyc---cMyg=M

by p-Mahler sub-modules of M such that, for alli € {0,...,s—1}, M;1/M; =
Dy /Dx»L;. But,
@y/@galzi = @y/@yzl
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with
T
~ i _L _1 —1 ]
Li =27 1Lz 71 = ($p — i)y, -+ (dp — ci)hyf = D bidh
j=0

for some b; € & of non-negative z-adic valuation and such that by(0)b,, (0) #
0. It follows from [Roql8, Proposition 34| that the (system associated to
the) module D /D »L; ~ @y/coyii is regular singular at 0 in the sense
of [Roql8, Definition 33| and, hence, is isomorphic to M4, for some A; €

GL,,(Q). This concludes the proof of Proposition 32.

4.4. Second step of the proof of Theorem 27: elimination of the
part of positive valuation. Consider s € Z>1 and r = (r1,...,7s) € Z%,
such that ry +--- +r; = d.

We let $,. be the group of matrices of the form

I,

(29) F = O e GL4(22)

where Fj; € My, .. (2).

We let 2270 be the subring of & made of the Puiseux series with support
in Q=¢. We let <0 be the subring of & made of the Puiseux series with
support in Q«g ; thus,

7<= ] Q=7
7€Q=0
The second step of the proof of Theorem 27 is the following result.

Proposition 34. Consider a block upper triangular matriz A € GLg(2) of
the form

Ay #
(30) A= .
0 As
for some (Ai,..., As) € GL (Q) x - - x GL,,(Q). There exists F € ), such
that the coefficients of
Ay *
(31) F[A] =

belong to 2=V,
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The proof is given below, after the following preliminary result.

Lemma 35. Consider A1, Ay € GL4(Q) and B € Mg(2>Y). There exists
F e My(227>°) such that

(32) F(2P)A; — AyF(2) = B(2).
Proof. We consider

F =Y A5 1B(r") Af € My(270).
k=0

A straightforward calculation shows that F' satisfies (32). O
In the following proof, for any F' =3} o Fy27 € Mg(J), we set
(33) F'=FR, FO= > Fz, F'= ) F2,
7€Q<0 7€Q>0
so that
F=F4+F0+F>"

Proof of Proposition 34. For any (i,7) € {1,...,s}? with j > i and any M €
M, »,(£?), we consider the matrix

o0 0

I, M

k3

TZ'J‘(M) = O O 6,57)71.

We have
Tiy(M)™! = Tiy(=M).
We let € be the set of block upper triangular matrices B € GL4(<?) whose

diagonal blocks are Ay, ..., Ag, that is, matrices of the form
Ay
A; B; ;
(34) B = O e GLy(2).
A4;
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Note that A € €. For any B € &, the matrix T; ;(M)[B] belongs to & and its
(k, 1)th block is equal to

—AiM(Z) + Bm‘ + M(Zp)Aj if (ka l) = (i,j),

(35) B+ M(2P)Bj, ifk=idiand !l > j,
—By,iM(z) + By ; if k<iandl=j,
By, else,

i.e., zooming at the upper right corner of the matrix 7; ;(M)[B] we obtain

jth column

—_——
* —B1,;M(z) + By, * *
* —Bi_1,iM(z) + Bi_1,; * *
ith row > —A;M(z) + B; j + M(2P)A; Bjj41+ M(2P)Bjj+1 -+ Bis+ M(2P)Bj s
* % *

where the #-blocks are equal to the corresponding blocks of B.

We equip the set & := {(k,1) € {1,...,5}? | k < I} with the following total
order: (k,1) < (k',I') if either (I =1’ and k¥’ < k) or (I < I'). With respect
to this order we have

(1,2) < (2,3) < (1,3) < (3,4) < (2,4) < (1,4) < (4,5) < (3,5) < -+~
Then, we shall construct, for all (k,1) € 8, a matrix Bl#!
following property:

(1) the systems ¢,Y = AY and ¢,Y = BIkY are P-equivalent via a

gauge transformation in $,;

(2) for all (i,7) € & with (i,5) < (k,1) or (i,7) = (k,l), the (i, )-block

(B, ; of BIF has coefficients in 22<0.

Our construction is recursive with respect to < and proceeds as follows.

€ & satisfying the

Construction of B2, According to Lemma 35, there exists M2l e
My, 1, (2270) such that M2(2) Ay — Ay M1 = — A79. Then, using (35),
we see that the matrix

B2 — 1y 5 (M) 4]

)

belongs to & and that
(B2, 5 = —A M2 4 Ay + MP2I(2P) Ay = AT

has coefficients in 22<0.

Construction of B[23! from B[], According to Lemma 35, there exists
M3l e M,, ., (279 such that M[23(2P) A3 — A, M[23] = *(B[LQ]);%
Then, using (35), we see that the matrix

B23l — Ty 3(M[2’3])[B[1’2]]

)
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belongs to € and that the matrices

(3[2’3])12 = (B[I’Q])m,

)

(B2 = A MBI () + (BUA)y 5+ MBS (P) Ay = (BO2)5S

’ 9
have coefficients in Z2<Y.

Construction of B3l from B[23], According to Lemma 35, there exists
MU e M, 5, (2270) such that MI31(2P)Ag — Ay MUIS] = —(BI231)70,
Then, using (35), we see that the matrix

B[173] — Tl 3(M[173])[B[273]]
belongs to & and that the matrices

(B3N, = (BRI,
(BI3)ys = (B2,
(B35 = —a M3 4 (B3, 5 MI3T(2P) Ay = (B2

)
)

have coefficients in 2=,

We construct the other matrices B34l B[24] plAl- pl4sl  pl3sl
Bls=1s] (in this order) is a similar way. It is clear that these matrices satisfy
conditions (1) and (2) above.

In particular, the systems ¢,Y = AY and ¢,Y = Bls=1sly are 2-
equivalent via a gauge transformation in $3, and B~ is of the form (31).

This concludes the proof.
O

4.5. Third step of the proof of Theorem 27: elimination of the part
of negative valuation. Consider s € Z>1 and r = (r1,...,7s) € Z%, such
that r1 + -+ + rs = d. We recall that U,. denotes the group of matrices of
the form

I,

(36) F e GLg(H)

I
-

where Fj; € M, . (V;—;). We continue with the notation (33).
The third step of the proof of Theorem 27 is the following result.
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Proposition 36. Consider a block upper triangular matriz
A1 *

(37) A= € GLy(2) n My(22<Y)
0 As

where (Aq,...,As) € GL,, (Q) x -+ x GL,,(Q). Then, there exists F' € U,
such that F[A] = A°.

We recall that A° denotes the constant coefficient of A seen as a Puiseux
series with coefficients in M4(Q). The proof of Proposition 36 is given below,
after a preliminary result.

Lemma 37. Consider A1, Ay € GL4(Q) and B € My(Vs). There exists
F(z) € Mg(Vs+1) such that

(38) F(2P)A; — AsF(z) = B(z2).
Proof. By linearity, it is sufficient to treat the case
B(z) = h(z)R

with R € My(Q) and h € V;. Since h € V; = <Y it follows from Lemma 16
BN
that the family (h(z»" )AkilRAfk);pl is summable. So, we can consider
1
= > h(zF)ASTTRATR € My ().
k=1

We claim that this F' has the desired properties. Indeed, the following
calculation shows that F' satisfies (38):

(Zp)Al A2F( )
1
= Y. h (7 T)AE T RATF A, — Ay D h(zF) AT RATH

k>1 k=1
1
= ST h(zrF ) ASRATETY = N n(zoF) AFRATF
k=1 k=1
1
— h(zr" )AL RAT Y
= B(z).

It remains to prove that the coefficients of F' belong to Vs;1. We let Afl =
Dy + Ny and As = Dy + Ny be the Dunford-Jordan decomposition of Al_l
and Ag respectively (i.e., for all i € {1,2}, D; is semisimple, N; is nilpotent
and D;N; = N;D;). Using the Newton binomial formula

—k : k k—lntl o k l Hk—I1
A=) )P Nf=) | JNiD;

1=0 =0

k : k k—1ntl o k k—1 atl
AQ_IZ ) D5 NQ_ZE ) D5 NG
=0 =0

and



32 C. FAVERJON AND J. ROQUES

(where (];) = 0if [ > k), we see that F is a Q-linear combinaison of terms
of the form

i
(39) > k(27" ) D5 SDY
k=1

with S € My(Q) and a € Z=g. In order to conclude the proof, it remains
to prove that the entries of (39) are in Vs;1. Since the latter property is
invariant by right and left multiplication by an element of GL4(Q), we can
assume that the D; are diagonal, say D; = diag(c;1,...,¢;q). In that case,
setting S = (s ;)1<i,j<n, We have

1
a k—1 k Tc
- <5132k CZZ Clj ))
1<t

It follows from Lemma 19 that the entries of the latter matrix are in V5,1 as
expected. O

Proof of Proposition 36. We set

Ay

A= O EGLd(@)

where A; ; € MTi,Tj(Wgo).
We want to prove that there exists F' € U, such that F[A] = A°, i.e.,
such that F(zP)A(z) = A°F(z). Note that, for any

(40) F= 0 €Y,

the equation F[A] = A° is equivalent to: for all (i,j) € {1,...,s}? with
J =1,

Zsz Ak] ZAkaJ()

k=i
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This can be rewritten as follows: for all (i,5) € {1,...,s}? with j >
(41) Fij(P)Aj — Al (2 Z Aszk,j Zsz ) A, (2)
k=i+1
j—1
:(Agj_AJ Z Aszk,J Z F i (27) A, ()
k=i+1 k=i+1

(where the sums Zk i1 are 0 if j —1 <4+ 1). We shall now prove the
existence of such F; ; € My, . (V;—;) by inductionon § = j—i € {0,...,s—1}.

Base case § = 0. The case § = 0 corresponds to ¢ = j and, in this case, we
can set Fj j(z) = Fii(z) = I,.

Inductive step § — 6 + 1. Consider § € {0,...,s — 2} and assume that we

can find F;j(z) € My, ., (Vj—;) for all 4,5 € {1 ., 8} with 7 > i such that
j—1<4. Then, foranyzye{l s}w1thj i such that j —i =6 + 1,
the terms involved in the right hand side of (41) are known and this right
hand side has coeffcients in {5. Now, Lemma 37 ensures that, for any ¢, j €
{1,...,s} with j > i such that j—i = §+1, we can find F; ;(z) € My, ;. (Vs11)
satisfying (41). This concludes the induction. O

4.6. Conclusion of the proof of Theorem 27. Proposition 30 guaranties
that there exist s € Z>1, © = (r1,...,7rs) € Z%, such that ry +--- + 7y = d,
(Ay,...,Ag) € GL,, (Q) x -+ x GL,,(Q) and G € GL4(2) such that

Ay *
(42) G[A] = -
0 Ag
Proposition 34 ensures that there exists H € §), such that the coefficients of
Ay *
HI[G[A]] = -
0 A;

belong to 22<0 = Useqoo Q[277]. Proposition 36 guaranties that there exists
K €0, such that
K[H[G[A]]] = C
where C' € GL4(Q) is the coefficient of 20 in H[G[A]].
Then, F} = (HG) ™!, F, = K~!, © = H[G[A]] and the matrix C' defined
above have the properties required by Theorem 27.

4.7. Proof of Theorem 29. We let F}, F5,C, 0 be the matrices given by
Theorem 27 and we set F' = F|F5, so that Fec is a fundamental matrix of
solutions of (21) and that

Fy(2P)C = ©(2)Fa(2).
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Consider another fundamental matrix of solutions of (21) of the form F'ecr

with F' € GLg(#) and C’ € GL4(Q). Combining the facts that Fec (resp.
F'ecr) is solution of (21) and the equality ¢,(ec) = Cec, we get F(2P)C =
A(2)F(2) (resp. F'(2P)C" = A(2)F'(2)). Setting R = F~1F' € GLy(7),
we get R(zF)C" = CR(2). Setting R = > 7427, we obtain, for all y € Q,
r2C" = Cry. This implies that the support supp(R) of R is left invariant

P
by multiplication by pZ. Since supp(R) is well-ordered, this implies that
supp(R) = {0}, i.e., R € GL4(Q). Thus, F' = FR and C' = R"'CR. Now
set Fy = F7'F'. Then, F' = [\ Fy, Fj = FyR and

Fy(2P)C" = Fy(2P)RC’ = F5(2P)CR = O(2) Fy(2)R = O(2)F5(2) .
Thus, the matrix R has the desired properties.

4.8. Proof of Theorem 4. Theorem 4 states that the p-Mahler equation
(1) has a full basis of generalized p-Mahler series solutions, i.e., it has d
Q-linearly independent generalized p-Mahler series solutions v, . ..,vq € R.
To prove this, we consider the p-Mahler system associated to equation (1),
namely

(43) Y (2") = A(2)Y (2)
where
0 1 0 0
(44) A= : : 0
0 B (| 1
_a _a _Qd-1
ag ag ag

It follows from Theorem 27 that this system has a fundamental matrix of
solutions of the form

F = FlFQGC
where

o [} € GLy(2) satisfies ¢, (F1)© = AF}, for some matrix © € GLy(Ky);
e the entries of F» € GL4(77) belong to V;
e the entries of ec are Q-linear combinaisons of elements of the form
ect? with ¢ € Sp(C) and j € {0,...,d — 1} (see Lemma 24).
Note that the identity ¢,(F)) = AF1©~! implies that the finite dimensional
Ke-vector space spanned by the entries of Fy is invariant under ¢,; this
implies that the entries of F} are p-Mahler Puiseux series.
Now, the entries y1, . .., yq of the first row of F are Q-linearly independent
solutions of (1) and it follows from the properties of the entries of Fi, F» and
ec listed above that they have the form

Yi = > feject’

Cesp(c)7]€{o77d_1}
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where the f.; are finite sums of products of a p-Mahler Puiseux series by an

_ 1
element of ¥. Since any element of ¥ is a linear combination over Q[z™ * |
of some £q A q, the fc; are finite sums of products of a p-Mahler Puiseux
series with a Hahn series of the form £, x . Hence, the y; are generalized
p-Mahler series. This concludes the proof.

5. STANDARD DECOMPOSITION: PROOFS OF PROPOSITIONS 6 AND 10

Recall that, according to Definition 5, the decomposition (3)-(4) of a gen-
eralized p-Mahler series f is standard if the triples (e, A, @) involved in the
support of the sum in (4) belong to the set

Ag = | ZL x (@) x N,
tEZ;O

where N, is the set of positive rational numbers whose denominator is
coprime with p and whose numerator is not divisible by p.

5.1. Proof of Proposition 6. Proposition 6 states that any generalized
p-Mahler series has a unique standard decomposition. The uniqueness is
proved in Section 5.1.1, the existence is proved in Section 5.1.2.

5.1.1. Uniqueness. The uniqueness of the standard decomposition in Propo-
sition 6 is clearly implied by the following result.

Proposition 38. The family

J
(§a,,\,a€c€ )(a,)\,a)EAst,(c,j)E@X xZ=0
is P-linearly independent.

Proof. We first note that [Roq24, Lemma 30| guaranties that the family
(ect?) ()T xZs0 is #-linearly independent. Therefore, in order to conclude
the proof, it is sufficient to prove that the family

(ga,)\,a)(a,)\,a)eAst
is P-linearly independent. This is ensured by Proposition 39 below. U

Proposition 39. The family

(ga,)\,a)(a,)\,a)eAst
is P-linearly independent.

This result is proved below after the following lemma.

Lemma 40. Consider s,t € Z=o such that s >t > 0, a = (aj,...,as) €

N‘(Sp), b= (by,...,b) € N’ép), d € Zz1. Then, there exists Cap q > 0 such that,

forally € 37, for allky, ... ks, l1,. .., b € Zsy such thatky, ... ks > Capa,
we have
a as

1 b1 bo by
(45)

Qs
pk1+k2+”'+lm :7+]ﬁ phitt: "‘ﬂm
if and only if v =0, s =t and, for allie {1,...,t}, a; = b; and k; = ¥;.
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Proof. We first consider the case t = 0.

Case t = 0. We have to prove that, for any s € Zxo, a = (a1,...,as) €
N‘Z’p) and d € Zz1, there exists Cyq > 0 such that, for all v € éZ, for all
k1,...,ks € Z>g such that kq,...,ks > Cq 4, the equality

al as Qg

(46) b T g Y ek

implies s = 0 and v = 0. We claim that any Cy 4 € Z>1 such that
ap +--+as 1

pCa,d < d
works. Indeed, the latter inequality implies that the left-hand side of (46)
belongs to [0, %1[ Since the right-hand side of (46) belongs to éZ, we get
that both sides or (46) are equal to 0, so s = 0 and vy = 0.

Let us now turn to the proof of the result in the general case. We argue
by induction on n = s + t.

The result is already proved when n = 0 or n = 1 for, in that case, we
have t = 0.

Consider an integer n > 2. We assume that the result is true for all
s =2t >0 such that s+t <n — 1. Consider s >t > 0 such that s+t =mn
and let us prove that the result is true for these s, t.

We already know that the result is true if ¢ = 0, so we can and will assume
that ¢ > 1. We distinguish two cases: as = by and ag # b;.

Case as = b;. Let D € Z>1 be such that p is coprime with the denominator of
pD%i. Consider &’ = (ay,...,as—1), b’ = (b1,...,b—1) and the corresponding
constant Cy p 4 given by the induction hypothesis. We set Cp p ¢ = max{D+
L, Ca b a}-

Consider v € éZ and ki,...,ks,l1,..., 0y € Z>1 such that ki,... ks =
Ca b q satisfying (45). We rewrite the equality (45) as follows
ai
ot
The left-hand side of (47) belongs to IWN(I,) whereas its right-hand

as as b ba be

(47) s Y R ) T pn T paes T it

side belongs to WN@). So, we have

(48) ki+ke+--+ks=0+0la+ -+ 1.
S — b 1
Thus, pk1+kg+~-+ks = pelugﬁrmwt and (45) gives
@ e o s b b o e
pk1 pk1+k2 pk1+k2+"-+k571 =7 pfl p61+52 p51+€2+-"+€t71 :

Since k1,...,ks—1 = Cy py g, wehavey =0, s—1=t—1,a; = b; and k; = {;
foralli e {1,...,t—1}. It follows from (48) that ks = ¢5 as well. Moreover,
we have as = bs by hypothesis. This concludes the induction step in this
case.
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Case a, # b;. We first treat the case ¢t = 1. Let L € Z=q be such that p” is
the greatest power of p dividing the numerator of as — by1. Let D € Z=1 be
such that the numerators of pDé, pPay,...,pPas_y is divisible by p. We
set Ca,b,d =D+ 1

We claim that there is no v € éZ and ki,...,ks, 01 € Z>o such that

ki,...,ks = Cap q satisfying (45). We argue by contradiction: we assume
that such ki, ..., ks, ¢1 exist. Arguing as in the case as; = b; treated above,
we see that

ki+ko+ -+ kg = 1.
Multiplying both sides of (45) by pF1*+ks = p1 | we obtain

(49) pk2+"'+ksa1 + e+ pksas,l +ag = pk1+"'+ksfy + b1.
This can be rewritten as follows

(50) 0 = (as — by) + pMt Fhegy 4o phog,_y — pFrtthey,

L+1 divides the numerator of pF2t—+ksq, +

But, by our choice of Cap.q, P
oo 4 pFsag_y — pFitthRsay but not the numerator of a, — by. This is in

contradiction with (50).

We now treat the case t > 2. Let L € Z=q be such that p” is the greatest
power of p dividing the numerator of as — b;. Let D € Z>; be such that
the numerators of pDé, pPai,...,pPas_1 is divisible by p*. For any ¢ €
{0,..., L}, consider a = (ay,...,as), by = (b,...,by_2,p'bs_1 + b;) and the
corresponding constant Cyp, ¢ given by the induction hypothesis. We set
Ca,b,d = max{D + 1, Ca,bmdy e Ca,bL,d}-

We claim that there is no v € éZ and kq,..., ks, 01,...,0 € Z>q such that
ki,...,ks = Cap q satisfying (45). We argue by contradiction: we assume
that such ki,..., ks, 01,..., 4 exist. Arguing as in the case as = b; treated
above, we see that

ki+ke+---+ks=0+0la+ -+ 4.
Multiplying both sides of (45) by pF1+Fks = plit+b e obtain

(51)

Pt B ay e pMag g e = PRy pf iy e pBib g b

This can be rewritten as follows

(52)
P Py = (as—be) +p" T oy e pFrag —pM TRy,
Since p*1 divides the numerator of pF2+Tksqy ... 4 pFsq | — plrtFhsy

but not the numerator of as — by, we get that ¢; € {0, ..., L}. Rewriting (45)
as follows

al as b1 bi—o phtb_1 + by

P L T e P 7K ¥ Ry )

and using the fact that ki,...,ks = Ca,bzt,dv we get that s =t — 1, which is
absurd because t < s. O
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Proof of Proposition 39. We want to prove that the family (§a,xa) (A a)eA
is P-linearly independent. Assume, on the contrary, that it is Z?-linearly
dependent. Then, there exist r € Zx1, pairwise distinct triples (o, Aj, a;) €

A, 1 < i < r, and Puiseux series fi,..., f, € &> such that
'
(53) Z fi€aixiai = 0.
i=1
For any i € {1,...,r}, we write a; = (@i1,...,ait;), & = (Qi1,...,06¢,),

Ai = (Ai1,---,Aig;). Up to renumbering, we might suppose that ¢ <ty <
<t

If t, = 0, then 7 = 1 and (a1, A1,a1) = ((),(),()). So, (53) reduces to
J1€0,0,0 = J1 = 0, whence a contradiction.

We now assume that ¢, > 1. Up to multiplying (53) by some power
of z, we might suppose that the z-adic valuation of f, is 0. Let d € Zx;
be such that the supports of fi,..., f- are included in éZ. We consider
the constants Ca, a;,d,---,Ca, a,d given by Lemma 40 and we set C =
max{Ca, a,.d,--->Ca,a.d}- S0, for any v e éZ, for any i € {1,...,r— 1}, for
any ki,..., ki, b1, ..., 0y, € Z>1 such that ki, ..., k;, = C, the equality

ar 1 Qpt, Q; 1 Qg t;

T . L E e T

holds if and only if v =0, ¢, = t;, a, = a; and (k1,..., k) = (01,...,4,.).
This implies that, for any ki, ..., k. € Z>c, the coeflicient of

apr 1 Ay ty
(54) ZipTli R TRy
in fia;\,a; is equal to:
o cikit kzi’trAfﬁ e /\fi:rm%tr if a; = a, where ¢; # 0 is the con-
stant coefficient of f;;
e 0if a; # a,.

The equality (53) guaranties that the sum of the coefficients of (54) in
fi€oanaars - > Jr€an Ar,a, 18 equal to 0, so, for any ki,...,k € Zzc, we
have
e S KA R

ied
where J be the set of i € {1,...,7} such that a; = a, and where ¢t = ¢, is

the common value of the ¢; for ¢ € J. But, since the 2t-uplets (ay, A;) are
pairwise distinct when 4 varies in J | it follows from [Sch03, Lem. 2.2] that
the family

781 ity ky k1+4-+ke
((kl e kt )\i,l . )\i,t )(kl’._.7kt)ezt)i€g

is Q-linearly independent. Actually, a straightforward adaptation of the
proof of [Sch03, Lem. 2.2| implies that the family

1 @itk ykiteetk
((kl kt A’i,l )\i,t )(kl,...,kt)eztgc.)ieg
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is Q-linearly independent (see also [FR24b]). This contradicts (55).
]

5.1.2. Euxistence. In order to prove the existence of the standard decomposi-
tion stated in Proposition 6, it is clearly sufficient to prove that any 277y x a

is a Q-linear combinaison of terms of the form z~7'¢ o/ N o Where @’ has en-
tries in N,,). The latter property is true and follows immediately from the
following lemma.

Lemma 41. For any s € Z=g, the Q-vector space Vs defined in Section 2.2
admits the following alternative description:

(56) Vs = Spang ({2_75(),(),() | 7€ Qxo}

U U {z_’yga,}\,a ’ v E Q>07 (Ot, >‘a a’) € Z;O x <@X >t X Nﬁp)}>
tef{l1,...,s}

Proof. Let Ws be the Q-vector space given by the right-hand side of (56).
We want to prove that Vs = t;. The inclusion #s; < V) is obvious. In order
to prove the converse inclusion Vs s, we argue by induction on s.

Base case s = 0. The inclusion Vs, < #/s for s = 0 is true because V) =
Wy = 2<0.

Inductive step s — 1 — s. Suppose that V51 < W for some s € Zx;
and let us prove that Vs < Ws. We consider the nondecreasing filtration
(Vs,8) ez, of Us given by the Q-vector spaces defined by

Vs,—1 = Vs
and, for all 8 € Z=,

Vs,ﬁ =Vs1 + Span@ ({Z_Wga,&a | YE QZO?
(A @) € ({0, B} x Z5') x (@")° x QLo} ).

Proving Vs < ts is equivalent to proving that, for all 8 € Z>_1, V, 3 = W.
Let us prove this by induction on .
Base case § = —1. If § = —1, then V; 3 = Vs 1 = Vs_1 and the inclusion
Vs g < Wy follows from the inductive hypothesis relative to s in this case.
Inductive step § —1 — . Suppose that the inclusion V; g3_; < W is true
for some 3 € Z>o and let us prove that the inclusion V; 3 < s is true. It
is clearly sufficient to prove that any £q x4 With (o, A,a) € ({0,...,8} x
Z‘;_Ol) x (Q7)* x Q2 belongs to W,. Consider such a triple (a, A, ).

Let us first note that, for all ¢ € Z>(, we have

ga,)\,pia - cga,k,p““a € Vs,ﬁ—l
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with ¢ = (A1 -+ Xs)7}; this follows immediately from Lemma 21 after notic-
ing that £, » pit14(2) = {axpia(2F). This implies that, for all u € Z>1,

u—1

(57) fa,)\,a - Cuga,}\,p“a = 2 Ci(ga,)\,pia - Cga,)\,pi+1a) € US,/B*l'
=0

Since Vs g—1 < Ws_1 by induction, (57) shows that, in order to prove that
§ana belongs to W, it is equivalent to prove that {4 x pua belongs to ¥,
for some u € Zz¢. So, up to replacing {a.aa by o pua for u € Zxq large
enough, we can and will assume that the denominators of the entries of a
are relatively prime with p.

Now, for any e = (e1,...,e5) € Z%,, we set ae = <;§1,,,.,z§less>. We
claim that
(58) fara € Span@ {&o A ae | o' e 230} + V1.

It is sufficient to prove this claim when e is of the form (0,...,0,1,0,...,0):
the general case is obtained by applying these special cases iteratively. Let
us explain the proof of (58) in the case when s = 2, the general case being
similar but requiring unpleasant notations. We split our study in different
cases.

Case e = (1,0) and ay # 0. We have

a a
_ a1 .09\ k1 \ k1+ko _Tll_ k142rk2
fara = Ky RS2 AT A Z PP
k1,k2>1
_a1/p_ ag
_ Z (kl+1)a1k32)\/1€1+1)\12€1+k2+12 pF1 k1 ThaFI
klko,kQZl

a1/p ag

_ Z )\1 (kl + 1)a1 (k‘g . 1)0&2)\’{1)\]2?14‘]{?227 Rl pF1+F2
k1=20,k2>2
_ai/p__ ag
_ Z M (b + 1) (ky — 1)(12)\11@1)\151-&-]@2 SE1  pFitha
k1=0,ko>1

a1 a2 o ay/p as
a a . / BT -
() (32) g et
JJ)\J

I
N
=
ag
Nag
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we get

a1 Qo a -
ga,A,a Z Z Al( 1>( />(_]‘) > g(j,j’))\,ae

= oy 0
o a -4
+ Z M( ) )72 0 €1 (o) (a2)-

This proves (58) in the case e = (1,0) and ay # 0.
Case e = (1,0) and ay = 0. We have
k1,ka>1

ag

k1=0,k2>1
_ay/p__ _ag
_ Z )\l(kl + 1)a1)\l{31/\§1+kzz SR1 T pR1tkg
k1=0,ka>2

a2

1 . _a1/p_
Sy (e
J

k1=0,ko>2 7=0

Using the decomposition
DI D N D D DD D
k120,k2=2  k1=1,k2=1  k1=0,k2=1 k1=1ke=1 Fk1=0k2=1
we get

[e%] a
fara = 2 A1 < 31)5], Aae T A2 ’ f 2),(az2)
j=0

ot _a1+a2
— 2 )\1)\2( ) (Al)\2) (a1+a2) - )\1)\22 P .
j=0 !

This proves (58) when e = (1,0) in the case ag = 0 as well.
Case e = (0,1). We have

ky\kitks "R TR iRy

_ a2 ki yki+ke 7 k1T R +E

fara = 2 Ky kg AT Ay z pbopmTR
k1,k2>1

_a1 __ag/p
Sk e R
k1=1,ko=0

a2

(0%)
> Az( ) )€<a1,j>,x,ae + A28 (a1),(M),(a1+as/p) -
=0 \J

This proves (58) when e = (0, 1).

_ai/p____az
Z (kl + 1)a1 )\’161+1)\/§1+k2+12 Rl pE1FhoFI

41
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Applying (58) with e = (e1,...,es) where e; € Zx¢ is such that p° is the
greatest power of p dividing the numerator of a;, so that a. € N fp), and using
the fact that Vs_1 < W;_1 by induction, we get

fa,)\,a € Ws + Us—l - Ws + Ws—l - ws-

This concludes the inductive step and the demonstration. O

5.2. Proof of Proposition 10. Fix r € {1,2,3}. In order to prove Propo-
sition 10, we have to prove that if a generalized p-Mahler series f admits a
decomposition of the form (3)-(4) such that all the Puiseux series fejaxa
satisfy (O,), then the Puiseux series involved in its standard decomposition
satisfy (©,) as well. In order to prove this, note that Lemma 41 implies that

_ 1
the Puiseux series involved in the standard decomposition of f are Q[z™ *]-
linear combinations of the f. ;o x q. Since the set of p-Mahler Puiseux series

satisfying (©,) is a @[zfi]—module, we get that the Puiseux series involved
in the standard decomposition of f satisfy (©,) as well. This concludes the
proof.

6. PURITY THEOREM: PROOF OF THEOREM 11

Theorem 11 is proved in Section 6.5 below. The proof uses a result from
[ABS23| that we shall first remind.

6.1. Reminders on the p-Mahler denominator. Theorem 8 ensures that
any p-Mahler Laurent series f € Q((z)) satisfies the growth condition (©Oy).
According to [ABS23|, one can determine whether or not it satisfies one of
the stronger conditions (©3) or (©3) by looking at its p-Mahler denominator.
Let us briefly remind this.

Recall that we let ¢, denote the operator which maps any f € J to f(2?).

So, for any f € 2 and i € Zxy, gi);,(f) = f(zpi).

Definition 42. The p-Mahler denominator ¢ of a p-Mahler Laurent series
f € Q((2)) is the monic generator of the ideal of Q[z] given by

d

(59) {P €Qlz] | Pfe Z @[z]qb;(f) for some d € Z;l} .
i=1

Remark 43. 1) In |[ABS23|, the previous definition is formulated for p-

Mabhler series f € Q[[z]]. Its extension to Q((2)) is straightforward.

2) The p-Mahler equations considered in [ABS23| have coefficients in Q(z),
whereas the equations considered in the present paper have coefficients in
the bigger field Ky. Note that f € Q((2)) satisfies a p-Mahler equation
with coefficients in Q(z) if and only if it satisfies a p-Mahler equation with
coefficients in K. Indeed, assume that f € Q[[z]] satisfies a p-Mahler
equation of the form (1) with ag, ... ,aq € @(2%) for some m € Z=1. Without
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loss of generality, we can assume that ag = 1. Let G be the Galois group of
the finite Galois extension @((z%)) of Q((2)). Then, f satisfies

bof + b1gp(f) + -+ + badl(f) =0

with b; = ﬁZaeG o(a;) € Q(2) and this equation is non trivial because
bp = 1.

In what follows, we denote by U the set of complex roots of unity and by
U, the set of roots of unity whose order is not coprime with p. We recall the
following result.

Theorem 44 ([ABS23, Theorems 6.1 & 7.1]). Consider a p-Mahler Laurent
series f € Q((z)). We have the following:

o [ satisfies (Oq) if and only if every non-zero root of the p-Mahler
denominator of f belong to U;

o [ satisfies (O3) if and only if every non-zero root of the p-Mahler
denominator of f belong to U,.

Remark 45. In [ABS23|, the previous result is stated for any p-Mahler series
feQ[[z]]. Theorem 44 follows from [ABS23] by using the following remark.
Consider g = 2z f with v € Z=q large enough so that g € Q[[z]]. Then,
[ satisfies (O2) (resp. (©s)) if and only if g satisfies the same property.
Moreover, every non-zero root of the p-Mahler denominator of f belong to
Uy, (resp. U) if and only if the p-Mahler denominator of g satisfies the
same property. Now, Theorem 44 follows from [ABS23, Theorems 6.1 & 7.1]
applied to the p-Mahler series g.

6.2. p-Mahler denominator for generalized p-Mahler series. We ex-
tend the definition of p-Mahler denominator to generalized p-Mahler series
in the following obvious way.

Definition 46. The p-Mahler denominator 9y of a generalized p-Mahler
series f € R is the monic generator of the ideal of Q[2] given by

d
(60) {P e Q[z] ‘ Pfe Z@[z]qﬁ;(f) for some d € Z;l}
i=1

if the latter ideal is non trivial; otherwise, we set 05 = 0.

Remark 47. 1) Contrary to the case when f € Q((2)) considered in Section
6.1, the ideal (60) may be trivial and, hence, the p-Mahler denominator 0f

may be equal to 0. For instance, this is the case for f(z) = z%.

2) One can prove that, for any generalized p-Mahler series f having a
decomposition of the form (3)-(4) such that the fejaxa belong to Q((z)),
the ideal (60) is non trivial. This can be proved using arguments used to prove
Proposition 51. As this will not be used in this paper, we do not include the
details.
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6.3. First step toward the proof of Theorem 11: denominator and
growth class of a basis of solutions. A first step toward the proof of
Theorem 11 is to prove that the zero locus of the coefficient ag of a p-Mahler
equation provides informations on the class (&2 — ©,) of its generalized p-
Mabhler series solutions.

Proposition 48. Consider a p-Mahler equation
(61) agd(y) + ag160 '(y) + - +aoy =0
with ag, . ..,aq € Q[z] such that apaq # 0. This equation has d Q-linearly
independent generalized p-Mahler series solutions satisfying
o (P — ) in any case;
o (P — ©y) if the non-zero roots of ag belong to U;
o (P — O3) if the non-zero roots of ag belong to Uy,.

Proposition 48 is proved below, after the following lemmas.

Lemma 49. Let f, g be generalized p-Mahler series such that

n

(62) eg = > aidi(g) + f

i=1
for some ¢ € Q[z]\{0} and some a1,...,a, € Q[z]. Then, the p-Mahler
denominator 04 of g divides €0y where ¥y is the p-Mahler denominator of f.

Proof. If 0y = 0, there is nothing to prove since any element of Q[z] divides
¢0r = 0.
We now assume that 9 # 0. We have

orf = D biop(f)
j=1
for some by, ..., by, € Q[z]. It follows that
(63) pg = Y 05a:05(9) + Y bidh(f).
i=1 j=1

But, applying qbg, to (62) with j € {1,...,m}, we get

(64) $h(f) = h(e)dh(9) — D dhlai)dy (9)-
i=1
Substituting the ¢J(f) in (63) with the right-hand side of (64) we obtain
m+n
pge Y Qlz]eh(g).
i=1

Thus, edf belongs to the ideal (60). Then, 0, divides ¢df, whence the result.
O
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Lemma 50. Let f, g€ Q((2)) be p-Mahler Laurent series such that
(65) o= aigi(o) + f
i=1
for some ¢ € Q[2]\{0} and some a1, ...,a, € Q[z]. Then, g satisfies
e (O1) in any case;
o (O9) if f satisfies (O9) and if the non-zero roots of ¢ belong to U;
o (O3) if f satisfies (O3) and if the non-zero roots of ¢ belong to U,.

Proof. The first assertion follows immediately from Theorem 8. In order to
prove the last two assertions, we first remind that Lemma 49 ensures that the
p-Mahler denominator of g divides ¢dy where ¢ is the p-Mahler denominator
of f. Then, the result follows immediately from Theorem 44. O

Proof of Proposition 48. Let ¢,(Y) = AY be the p-Mahler system associated
to the p-Mahler equation (61), where

0 1 0o .- 0
(66) A= . ST,
0O -+ - 0 1

—_% _a1 _%d—1

aq aq aq

The entries of the first line of any fundamental matrix of solutions of this
system constitute a full basis of solutions of (61). Thus, in order to prove
that (61) has d Q-linearly independent generalized p-Mahler series solutions
satisfying (©,), it is sufficient to prove that ¢,(Y) = AY has a fundamental
matrix of solutions whose entries are generalized p-Mahler series satisfying
(#—0O,). By Theorem 27 and Remark 28, the system (44) has a fundamental
matrix of solutions of the form

FiFaec

where
e I} e GLy(2) is such that

(67) ¢p(F1)O = AF,

for some upper triangular matrix © with diagonal coefficients in @X
and with upper-diagonal coefficients in Uﬁye@>0 Q[z7"];
e [ has entries in V;

e the entries of ec are Q-linear combinations of some e 7.

In order to prove that ¢,(Y) = AY has a fundamental matrix of solutions
whose entries are generalized p-Mahler series satisfying (©O,), it is sufficient
to prove that the entries of Fj satisfy (©,). In order to conclude the proof,
it is thus sufficient to prove that any of the entries of Fj satisfy the following
property, that we denote by (¢):
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e (©) in any case;
e (©y) if the non-zero roots of ag belong to U;
¢ (O3) if the non-zero roots of ag belong to U,,.

We will deduce this from equation (67). Note that Property (¢) is invariant
under sums, product by an element of Q[z7!] and under ¢,. We first notice
that, for any k € Z=1, the entries of F satisfy (O, ) if and only if the entries
of Fy(2*) satisfy (©,). Thus, up to replacing z by 2*, Fy(z) by F1(z*), ©(z)
by ©(z%) and A(z) by A(zF) in (67) for a suitable k € Zs1, we can and
will assume that Fj has coefficients in Q((z)) and that © has coefficients in
Q[27!] (note that the fact that the non-zero roots of ag belong to U (resp.
U,) implies that the non-zero roots of ag(z*) belong to U (resp. U,) as
well). Equation (67) can be rewritten as follows:

(68) agF1A = Boy(F1)
where
A1 *
A=0"1= .
0 Ad
has diagonal coefficients A,...,Ag € @X and upper-diagonal coefficients in

Q[z!] and where

_al ... CEEEY —ad
B_ Afl B ag 0 - 0
ag 0

Setting F1 = (fij)i<i,j<d, we deduce from (68) that, for all 4,5 € {1,...,d},

il d o
fi e\ o ke mandp(fry) ifi=1,
" <z—zf fux Awa) - { aoléﬁpl(fiff,j)p v ifie{2,...,d}

where the symbol = stands for elements of Q[z7!].
For j = 1, this gives

X —akdp(fr) ifi=1,
a0A1fi1 = { aoléspl(fiff,lf . ifief{2,...,d}

This implies that, for i € {2,...,d}, fi1 = A\, Y"1 (f1.1) and, hence,

d

aoA1fi1 = Z _ak)‘l_(k_l)¢];§(fl,l)~

k=1

Thus, the p-Mahler denominator of fi 1 divides ag and it follows from The-
orem 44 that f1; satisfies (¢). Therefore, for any i € {2,...,d}, fi1 =

)\,(1;1) i—1

1 » (f1,1) satisfies (o) as well.
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For j = 2,

d e
- fi=1
ap (%fi1+ Xafio) = Zk:o ak¢p(fk,2) 1 . ,
0 (+fi 2fiz2) { aoPp(fi-1,2) ifie{2,...,d}
where the symbol * stands for an element of Q[z~!]. This implies that, for
i€{2,...,d}, fia= Ag_(l_l)%—l(fl,z) + * and, hence
d

agAa fi2 = Z —ak)\;(kil)ﬁ;(fl,z) + x
k=1

where the symbol * stands for p-Mahler elements of Q((2)) satisfying (o).
It follows from Lemma 50 that fo satisfies (¢). Therefore, for any i €
{2,...,d}, fiz =AUV G (fr0) + * satisfies (o) as well.

Iterating this argument, we find that, for all ¢,j € {1,...,d}, f; ; satisfies
(). O

6.4. Second step toward the proof of Theorem 11: roots of the p-
Mahler denominator of generalized p-Mahler series. The next step
toward the proof of Theorem 11 is the following result.

Proposition 51. Let f be a generalized p-Mahler series of the form
f = Z fc,j,a,A,a&a,A,aecgj

(¢,/)eQ” X Zs0,(c,\,a)eA
where the fejaxa belong to @((z)) We assume that the vectors a involved
in the support of the sum have entries in Z~qy. Then, the following hold:

o if f satisfies (& — Og) then the p-Mahler denominator of f has all
its mon-zero roots in U;

o if f satisfies (& — Os) then the p-Mahler denominator of f has all
its non-zero roots in U,.

In particular, in both cases, the p-Mahler denominator of f is non-zero.

Proposition 51 is proved at the end of this subsection, after the following
lemma.

Lemma 52. Proposition 51 holds if f € .

Proof. Let us first introduce some notations.

We let M be the set of p-Mahler Laurent series h € Q((2)) satisfying (Os)
(resp. (O3)). It is a Q[z, 2~ }]-module invariant by ¢,,.

For any s € Zxq, we let ¥ be the set of Hahn series of the form

Z fa,)\,aga)\,a
(a)\,a)EUtE{O s} Zéox(@x)t xXZt

where the sum has finite support and where the fo o belong M. In partic-
ular, Wy = M.

.....
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For any s € Z>o, we consider the filtration (W 5)gez., of Ws defined as
follows: ¥ 5 is the set of Hahn series of the form

(69) Z fa,A,afa,A,a
aef0,....B}x 253" Ae(@ ), aeZs
+ Z fa,)\,aga,)\,a
(a,)\,a)EUte{O sfl}Zt)oX(@X VEXZE

where the sums have finite support and where the fq x o belong to M. In
particular, Wy 3 = Wh = M.
It will be convenient to set, for any s € Z>1, Ws 1 = Ws_1.

.....

Since M is a Q[z, 2~ !]-module, so are s and W 5. Moreover, Lemma 21
implies that the Q[z, z~!]-modules ); and W g are invariant by ¢,.

Since any Hahn series satisfying the assumptions of Proposition 51 belongs
to W for some s € Zq, the statement of the present lemma can be restated
as follows: Proposition 51 holds for any element f of W, for any s € Z>g.
In order to prove this, we argue by induction on s.

Base case s = 0. If s = 0, then W, = Wy = M and the result follows
immediately from Theorem 44.

Inductive step s — 1 — s. Suppose that the result is true for the elements
of Ws_1 for some s € Z=; and let us prove that the result is true for the
elements of . Since Wy = J BeZs W g, it is equivalent to prove that the
result is true for any element of ), 3 for any 8 € Z>_1. In order to prove
this, we argue by induction on .

Base case § = —1. If 8 = —1, then W, 53 = W, 1 = W,_1 and the result
follows from the inductive hypothesis relative to s.

Inductive step §—1 — . Suppose that the result is true for the elements
of W, 31 for some B € Z>o and let us prove that the result is true for the
elements of W 3. Any element f of W g can be written as follows

(70) f = Z fa,)\,aga,)\,a mod Ws,ﬁfl‘
ae{BY x2S Ae(@7)®,aeZs

We will say that the (s, )-length of such an f is at most | € Zs¢ if the
number of terms in the above sum is at most . We now argue by induction
on [.

Base case [ = 0. If [ = 0, then f belongs to W, 3_; and the result follows
by the inductive hypothesis relative to 5.

Inductive step [ —1 — [. We assume that the result is true for any element
of W 5 of (s,[)-length at most { — 1 and we will prove that it is true for
any element of W, 5 of (s, 5)-length at most I. So, we consider an element f
of W g of (s, 3)-length at most [ and we consider its decomposition (70). If
all the fq e involved in this decomposition are 0, then we are in the base
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case [ = 0 that has already been treated. So, we can assume that there is
an index (a®, X%, a®) such that fao 0 g0 # 0. Since fuo yo 40 satisfies (Os)
(resp. (©s)), it follows from Theorem 44 that the non-zero roots of the p-
Mahler denominator 9-0y , ., .o Of fn0 20 g0 belong to U (resp. to Up). B

definition of the p-Mahler denominator, there exist ag,...,aq € Q[z] such
that

ISH

Dfao,)\o,ao Z a]¢p a® A0, ao)

We can write
' ="ho+ fa0 20 a08a0 A0 a0
with hg € W, 5 of (s, §)-length at most [ — 1 and we have

Uf = Dh[) + Df 0 AO aogao,)\o,ao

_0h0+ Za] ao )\0 ao)fao)\oﬂo.
j=1

But, it follows from Lemma 21 that
gzsIjé(foéo,)\o,ao)Sao,)\o,ao = C‘j¢%(fa07>\0,a0§a0,>\0,a0) mod Wsﬁ—l'

where ¢ € Q is the inverse of the product of the coordinates of A°. So, we
get the following equalities modulo #; 5_:

d
0f = dho+ Y 4, G(fao A0 40600 A0 a0)

j=1
d d
= ho— Y a;d Gl (ho) + Y. a;d SL(f)
j=1 =1

Hence, we have
hoi= of = Y a;d¢l(f) =0ho — Y aic'$l(ho) mod Wi 54
j=1 =1

Using Lemma 21 again and (71), we see that h is — as hg — an element
of Ws 5 of (s,B)-length at most [ — 1. By the induction hypothesis on the
(s, B)-length, the p-Mahler denominator 9, of h has its non-zero roots in U
(resp. in Up). Then, using (71) and Lemma 49, we get that the p-Mahler
denominator 0y of f divides 0 - 9, and, hence, has its non-zero roots in U
(resp. in Up). This concludes the proof. O

Proof of Proposition 51. To any generalized p-Mahler series of the form
(71) [ = Z fc,j,a,)\,afa,)\,aecgj

(e)eQ xZzo (@A @)eUrer ) ZLox (@) ZL,
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where the f. j a.x.a € Q((2)) are p-Mahler Laurent series, we attach a number
K(f) € Z1 defined as follows. For any (c,j) € Q" x Zsg, we set

(72) hc’j = Z fc,j,a,A,aﬁa,)\,a € %a
(@xa)eliez ZLox (@)X ZL,

so that

(73) f= Z hc,jecgj-

(Cvj)e@x XZZO

We let C(f) be the set of ¢ € Q" such that hej # 0 for some j € Z>g. For
each ¢ € C(f), let J(f,c) denote the maximal j € Zx( such that h.; # 0.
We set K(f) = Yeee(py(1 + J(f,0)).

In order to prove that Proposition 51 holds true for any generalized p-
Mahler series f of the form (71) satisfying (& — ©z) (resp. (& — ©3)), it is
of course equivalent to prove that it is is true for any generalized p-Mahler
series f of the form (71) satisfying (&2 — ©3) (resp. (&2 — ©3)) such that
K(f) < k for some k € Z>1. Let us prove this by induction on k.

Base case k = 1. In this case, f = h¢pe. for some c € Q" and the result
follows immediately from Lemma 52 because h.ge. and h.o have the same
p-Mahler denominator.

Inductive step k£ —1 — k. Consider a nonzero generalized p-Mahler series
f of the form (71) satisfying (&2 —©a) (resp. (£ —©Osy)) such that K(f) < k.
We use the notations (72) and (73). Choose an arbitrary ¢y € C(f) and set
jo = J(f,co). We set

fN = Z hc,jecgja
(Cvj)e@x XZ207(CJ)7&(COJO)
so that
f = f + hCO,joecogjO'

It follows from Lemma 52 that the p-Mahler denominator d = 9y, of heq jo

€0,J0
has its nonzero roots in U (resp. Up). We have

d
Ohey jo = Z aid’;(hCoJo)
i=1
for some d € Z=1 and some ay, .. .,aq € Q[z]. Therefore, we have

d

of =0f + Dhco,joecogjo =0f + Z aiqﬁ;(hCo,jo)eCogjo'
=1
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But,
d . .
Z aiﬁb;;(hcod'o)ecogjo
i=1
d . . .
= Z Cazaid);(hcmjoeco (E - i)jo)
=1
g & Jo
= ZZ 5 <S> 1¢p( COJOGCOWO_S)
d . . d ]O
= Zcolai(j);(h%me% —i—Z Z ( > a,qbp( Coyoecofo )
=1 i=1s=1
d 2, & Jo
= Z az¢p f= f +Z Col<s> al¢p( CO,]()eCOe )
i=1 i=1s=1
d . .
= D acy Gp(f) + 7
i=1
with
do o Gl . .
7=~ Ne'achD)+ X X e (L) iradh e )
i=1 i=1s=1
So,
d . .
(74) of = > aicg'dy(f) + g
i=1

where g = 0f + §. It is obvious that g satisfies (2 — ©y) (resp. (P — Os))
and K(g) < K(f) < k, so K(g) < k— 1. By induction, Proposition 51
holds true for the generalized p-Mahler series g and it follows from (74) and
Lemma 49 that the same is true for f. O

6.5. Proof of Theorem 11. We prove Theorem 11 below, after a couple
of lemmas. For any v € Z>; relatively prime with p, for any k € Z, for any
element f of R of the form

f = Z fc,jecgj
(Caj)e@x XZZO
with f.; € J, we set

[wpt]ef = S Lo () ek (ee) ok ()
(c,§)eQ” xZxo

- N i) e + k)

(c.1)€Q” xZxo
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Lemma 53. If f is solution of the equation
ag(2)y + a1(2)p(y) + - + aa(2)dy(y) = 0

then [vp*lsf is solution of the equation

ag (2" )y + a1 (2" )dp(y) + - + aa(2")¢(y) = 0.

Proof. This result follows immediately from the following obvious facts: the
map [vp*], is additive and, for any h € J#, we have

[Pk (hf) = h(z")[vp"]+(f).
O

Lemma 54. Consider a generalized p-Mahler series f, v € Z=1 relatively
prime with p, k € Z and r € {1,2,3}. Then, f satisfies (¥ — O,) if and only
if [vp¥]sf satisfies (22 — O,.).

Proof. Let us first consider the case when f is a Puiseux series. In order to
prove the lemma in this case, it is clearly sufficient to prove that if f € &
satisfies (O,) and if ¢ € Qxo, then g(z) = f(2°) satisfies (©,). Let us prove
this. Setting f = > cq fy27, we have g = 3} . ¢,27 with gy = fe-1,. If
r =1, we have A(f,) = O(H(7)), so f(gy) = O(H(c™'v)). But, H(c™1y) <
H(c™Y)H(v). So H(c™'v) = O(H(v)) and, hence, fi(g,) = O(H()) so that
g satisfies (O;) as wanted. The cases r € {2,3} are similar.

We now come to the general case: we consider a generalized p-Mahler
series f, v € Z> relatively prime with p, k € Z and r € {1, 2,3} and we want
to prove that f satisfies (22 — ©,) if and only if [vp¥]. f satisfies (£ — O,.).
Let

f = Z fc,j,a,)\,aga,)\,aecgj
(¢.1)eQ” xZz0,(c, A a)eAst
be the standard decomposition of f.

Case k = 0. Since {q x,a(2") = {a,Ava(2), Wwe have

@) S = 2 Feqana(z)arva(2)ect.
(e:)€Q” xZ0,( A a)eAst
This is the standard decomposition of [v].f because v is relatively prime

with p and, hence, the va involved in (75) have entries in N,). Then, the
following properties are equivalent:

(1) f satisfies (& — O);

(2) Y(¢,7) € Q7 X Zzp, ¥(a, A, a) € Ay, fej.ana(z) satisfies (O,);

(3) Y(c,7) € Q7 X Zzp, ¥(a, A, a) € Ag, fejana(2”) satisfies (O);

(4) [v]«f satisfies (22 — O,.).

The equivalences between (1) and (2) and between (3) and (4) follow directly
from the definition of (& — ©,) and the equivalence between (2) and (3)
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follows from the Puiseux case considered at the very beginning of the proof.
This concludes the proof in the case k = 0.

Case v = 1 and k£ = 1. Assume first that f satisfies (& — ©O,). Since
Eaxna(?’) = arpalz) We have

(76) [p]*f = Z fc,j,a,)\,a(zp)‘fa,)\,a(Zp)cec(g + l)j
(¢.4)€Q” xZz0, (@, A @)eAst
= Z gc,j,a,k,a(z)fa,A,a(Z)ecgj

(¢,))€Q xZs0,(a,A,a)eA

where, for each tuple (c,j, o, A, a), the Puiseux series g ja,xa(2) is a Q-
linear combinations of the f, i o x .a/p(2P) with j* = j. But, it follows from
the Puiseux case considered at the very beginning of the proof that the
fejara(ZP) satisfy (O,). So, the g jaxq satisfy (©,) as well and, hence,
[p]«f satisfies (£ — O,).

Conversely, assume that [p].f satisfies (& — ©,). Since fa,A,a(z%) =
Sana/p(2), if we write

[p]*f - Z gCJ}a)\,a(Z)fa,)\,a(z)ecgj
(e,§)€Q” xZz0,(a,\,a)eA

where the gcjaxa € & satisfy (O,), then

1 1 ,
(77) f = Z gc,j,a,)\,a(zp)501,)\,0.(2?)0 1€c(£ - 1)]
(c,§)€Q” xZz0,(c,\,a)eA
= Z fc,j,a,k,a(Z)fa,)\,a(z)ecgj

(¢,/)eQ xZs0,(a,\,a)eA

where, for each tuple (c,j, o, A, a), the Puiseux series f.jaxa(2) is a Q-
1
linear combinations of the g. j/ oA pa(27) with j° = j. But, it follows from
the Puiseux case considered at the very beginning of the proof that the
1
Jejana(2?) satisfy (O,). So, the fcjaxa satisfy (©,) as well and, hence,
f satisfies (2 — ©,.).

General case. The case k € Zx1 follows immediately from the previous
particular cases by using the fact that [vp¥], = [p]¥[v]«. If k € Z<_1, then,
using the equality [v]«f = [p~*]«[vp*]«f and the cases considered above,
we get that f satisfies (&2 — O,) if and only if [v].f satisfies (& — ©,) if
and only if [p~*][vp*]«f = [V]«f satisfies (£ — ©,) if and only if [vp*]f
satisfies (&2 — ©,). This concludes the proof. O

Proof of Theorem 11. Let f be a generalized p-Mahler series satisfying (&7 —
©,) for some r € {1,2,3}. We have to prove that the minimal p-Mahler
equation of f over Ky, has a full basis of generalized p-Mahler series solutions
satisfying (&2 — O,).
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Let first consider the case » = 1. Theorem 4 ensures that the minimal
p-Mahler equation of f over K., has a full basis of generalized p-Mahler se-
ries solutions. Theorem 8 guaranties that any generalized p-Mahler series
satisfies (&2 — ©y). This concludes the proof in the case r = 1.

We now suppose that r = 2 (resp. r = 3).

Let us first consider the special case when

f= Z fc,j,a,A,a&a,A,aecgj

(e)€Q" xZzo, (X a)eUser, o, Zhox (@) x 2L,

with f.jaxa € Q((2)). Proposition 51 ensures that the p-Mahler de-
nominator 9y € Q[z] of f has its non-zero roots in U (resp. U,). Let
ai,-..,ae € Q[z] be such that f is annihilated by the operator
e

(78) o — ) aidy,

i=1
Proposition 48 guaranties that (78) has e Q-linearly independent generalized
p-Mabhler series solutions fi, ..., fe satisfying (& — Og) (resp. (£ — ©Os)).
Since the minimal p-Mahler operator of f is a right factor of (78), it has a
full set of solutions made of Q-linear combinaisons of fi, ..., f.. Such linear
combinaisons satisfy (& — Oz) (resp. (& — Os)), as wanted.

We now come to the general case when
f = Z fc,j,a,)\,afa,)\,aecw
(C7j)e@x XZ?O:(Q7A70’)EA

with f.jaxa € &. For any v € Z> relatively prime with p and any k € Z>,
we have

v k .
[l/pk]*f - Z fcvjvavAva(z P )ga,)\,upka(z)ckec(g + k)]'
(c,§)€Q” xZx0,(c, A, a)eA

From now on, we fix v and k such that the fc’j’a)\,a(z”pk) belong to Q((2))
and the vp*a involved in the previous sum have entries in Z-o. Then, we
have

[Vpk]*f = Z gc,j,a,k,aéa,)\,aecgj

(c.)eQ” xZzo0,(@,Xa)elUser Zhox (@)X ZE

for some ge j.axa € Q((2)). Moreover, Lemma 53 guaranties that [vp*].f is
solution of the p-Mahler equation

ao(= Yy + -+ aa(=)9(y) = 0

and Lemma 54 ensures that [vp¥]. f satisfies (2 — ©g) (resp. (& — O3)).
It follows from the first part of the proof that that the minimal equation
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over Ky, of [vpF].f has a full basis of generalized p-Mahler series satisfying
(P — Oy) (resp. (£ — ©3)). Taking the image of this basis by [vp*]; !, we
get the desired result. O

7. FINAL REMARK ABOUT THE PURITY THEOREM

Theorem 11 states that the property (£ —©y), (2 —Oz) or (¥ —©O3) of a
generalized p-Mahler series is inherited by the other solutions of its minimal
equation. The following result shows that this is not true for (&2 — ©Oy4) nor
for (27 — Os).

Proposition 55. There exists a p-Mahler power series satisfying (&2 — Oy)
and (2 — Os) having the following property: its minimal p-Mahler equation
has a generalized p-Mahler series solution which does neither satisfy (22 —©y)
nor (2 — Os).

Proof. Let p = 2. Consider the following equation
(79) y(2) + (2 = Dy(z*) — 229(2") = 0.

It is well-known that one of its solutions is the generating series frs € Q[[2]]
of the Rudin-Shapiro sequence:

(@n)nezso = 1,1,1,-1,1,1,-1,1,1,1,1, -1, -1, -1,1,... .

It’s coefficients belong to {—1, 1}, so that it satisfies (Os) and, thus, (22 —Ox)
and (Z—0Os). A study of the Newton polygon of this equation, as in [Roq24],
shows that the exponents attached to this equation are 1 and —%. Thus, it
follows from [Roq24| and Theorem 27 that the system associated with (79)
has a fundamental matrix of solutions of the form F} Fyec, where

1 1 0
Fy e GLo(22), Fy = (0 §>’ ec = (O e 1>’
2

with £ € 1. The upper-left entry of Fj is solution of (79). Hence, up to
multiplication by a scalar, we may take it to be frs. Let g = (F1)12 € & be
the upper-right entry of Fy. Then, a second solution of (79) is the generalized
2-Mahler series fe_% where f = frs€ + g€ .

Using the fact that ¢2(67%) = —leié, we obtain that f is solution of the
equation

(80) y(z) — 5(z = Dy(z*) — 52y(z*") = 0.
Let

x(z) = %50,72,1(2) = — Z (—2)k=1,-12" ¢
k=1

We claim that we can take & = x. To prove this claim it is sufficient to
prove that there exists a Puiseux series ¢ such that frgx + g is solution of
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(80). Since x(2%) = —2x(z) — 1, it is equivalent to prove that the following
equation has a Puiseux solution:

1 1

(81) y(z) — Q(Z — 1)y (z*) — §zy(z4) = ?ZfRS(Z) - %fRs(ZZL)-

A study of the Newton polygon associated to (81), as in [CDDM18]|, shows
that this equation has a power series solution. Thus, we can take £ = x and
g to be this power series solution of (81). Since the decomposition

1
f=(5/rs)é0~21 + 90,00

is the standard decomposition of f, to conclude it is sufficient to prove that
g do not satisfy (Oy).

Using (81), it is easily checked that val, g = 0. Looking at the coefficient
of 2 in (81) we obtain that gy = % Let g = >.,509n2". Looking at the
coefficient of 2! in (81) and using the fact that g € Q[[2]] we obtain

1 1 1

g1 — 590 - 590 = §a27

where frg = 2n>0 anz™. Thus, g1 = %. Now, since g is a power series,
looking at the coefficient of 22" in (81) we obtain,

1 1
n = —Qd9n —_ - n—
g2 5 241 292 1

Since agny1 = +1, it follows by induction on n that the 2-adic valuation of
gon is equal to n+1. In particular, (gen) = n. Since n = log(H (2"))/log(2),
we have fi(g,) = Q(log(H(v))) and g(z) does not satisfy (Oy). O
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