
A PURITY THEOREM FOR MAHLER EQUATIONS

C. FAVERJON AND J. ROQUES

Abstract. The principal aim of this paper is to establish a purity theo-
rem for Mahler functions that is reminiscent of famous purity theorems
for G-functions by D. and G. Chudnovsky and for E-functions (and,
more generally, for holonomic arithmetic Gevrey series) by Y. André.
Our approach is based on a preliminary study of independent interest
of the nature of the solutions of Mahler equations. Roughly speaking,
we show that any Mahler equation admits a complete basis of solutions
formed from what we call generalized Mahler series, which are sums
involving Puiseux series, Hahn series of a very special type and solu-
tions of inhomogeneous equations of order 1 with constant coefficients;
such bases of solutions can be compared to those of differential equa-
tions given by Turrittin’s theorem. In the light of B. Adamczewski, J.
P. Bell and D. Smertnig’s recent height gap theorem, we introduce a
natural filtration on the set of generalized Mahler series according to
the arithmetic growth of the coefficients of the Puiseux series involved
in their decomposition. This filtration has 5 pieces. Our purity theorem
states that the membership of a generalized Mahler series to one of the
three largest pieces of this filtration propagates to any other generalized
Mahler series solution of its minimal Mahler equation. We also show
that this statement does not extend to the first two pieces.
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1. Introduction and statement of the main results

The primary aim of this article is to establish a purity theorem for Mahler
functions that is reminiscent of famous purity theorems for G- and E-func-
tions and, more generally, for holonomic arithmetic Gevrey series by D. and
G. Chudnovsky and Y. André respectively. Although there is no concrete
link between the latter results and those of the present article, they played a
fundamental role in the genesis of our work, so we start by briefly recalling
them.

Following Y. André in [And00], we say that a power series

f “
8
ÿ

n“0

anz
n P Qrrzss

with coefficients in the field of algebraic numbers Q is an arithmetic Gevrey
series of order s P Q if there exists C ą 0 such that

- for all n P Zě0, the maximum of the moduli of the galoisian con-
juguates of bn :“ an

n!s is bounded by Cn`1;
- there exists a sequence of positive integers pdnqně0 such that, for all
n P Zě0, dn ď Cn`1 and dnb0, dnb1, . . . , dnbn are algebraic integers.

An holonomic arithmetic Gevrey series of order 0 (resp. ´1) is nothing but
a G-function (resp. E-function) in the sense of C. L. Siegel [Sie29, Sie14]. By
holonomic, we mean solution of a nonzero linear differential equation with
coefficients in Qpzq.

To state the purity theorem for these series, it is convenient to introduce
the differential Crzs-algebra NGAtzus of arithmetic Nilsson-Gevrey series of
order s. An element of NGAtzus is by definition a C-linear combination of
terms of the form

upzqzα logjpzq

where α P Q, j P Zě0, and upzq is an arithmetic Gevrey series of order s.
The following fondamental purity theorem is due to D. and G. Chudnovsky

for s “ 0 in [CC85] (the proof contains a slight mistake corrected by Y.
André in [And89, Chapter VI]) and to Y. André for s ‰ 0 in [And00] (see
also [And03]).

Theorem 1 (Y. André, D. and G. Chudnovsky). Let y be an arithmetic
Gevrey series of order s P Q or, more generally, an element of NGAtzus
solution of a nonzero linear differential equation Ψy “ 0 with coefficients in
Cpzq. We assume Ψ of minimal order µ. Then:

(1) if s ď 0, Ψ admits a full basis of solutions in NGAtzus;

(2) if s ą 0, Ψ admits a full basis of solutions of the form eαiz
´ 1
s yi with

yi P NGAtzus and αi P Q.

Remark 2. Any linear differential equation of order µ with coefficients in
Cpzq – or, more generally, in Cptzuq – has a basis of solutions made of



A PURITY THEOREM FOR MAHLER EQUATIONS 3

C-linear combinations of terms of the form

upzqzα logjpzqeQpz
´1{µ!q

where α P C, j P Zě0, upzq is a Gevrey series and QpXq P XCrXs. The-
orem 1 shows in particular that the fact that the differential operator under
consideration is a nonzero differential operator of minimal order annihilating
an holonomic arithmetic Gevrey series imposes severe restrictions on the α,
upzq and QpXq involved in its basis of solutions.

We now come to the subject of our study, the Mahler equations. Let p ě 2
be an integer. By p-Mahler equation, we mean a linear functional equation
of the form

(1) a0pzqfpzq ` a1pzqfpz
pq ` ¨ ¨ ¨ ` adpzqfpz

pdq “ 0

with coefficients a0, . . . , ad in the field

K8 “ Qpz
1
˚ q “

ď

kPZě1

Qpz
1
k q

of ramified rational functions such that a0ad ‰ 0. A solution of such an
equation will be called a p-Mahler function. If such a solution is a power
series (resp. a Puiseux series, a Hahn series, etc.), we will say that it is a
p-Mahler power series (resp. a p-Mahler Puiseux series, a p-Mahler Hahn
series, etc.).

Although the solutions of Mahler equations are very different in nature
from those of differential equations, certain properties bring them close to
arithmetic Gevrey series. Indeed, on the one hand, it is well-known that any
p-Mahler series f P Qrrzss is an arithmetic Gevrey series of order 0 [Dum93,
Chap. 3, Cor. 8 and Th. 6] (but, be careful, if it is not rational, then f is
not holonomic [Ran92, BCR13], and isn’t even differentially algebraic over
Cpzq [ADH21]). On the other hand, the famous refinement of the Siegel-
Shidlovskii theorem due to F. Beukers in [Beu06] and reproved by Y. André
in [And14] admits a mahlerian analogue proved by P. Philippon [Phi15] and
supplemented by B. Adamczewski and the first author in [AF17], which
brings p-Mahler functions closer to E-functions. Note that another proof
of Philippon’s result, in the spirit of [And14], was subsequently given by L.
Nagy and T. Szamuely in [NS20] and that a third proof was given by B.
Adamczewski and the first author in [AF23]. It is properties like these that
have encouraged us to investigate a possible extension of the above purity
theorem to Mahler equations.

A natural motivation for looking at the growth properties of the coeffi-
cients of p-Mahler series or, more generally, of p-Mahler Hahn series comes
from the Bombieri-Dwork conjecture predicting that the minimal differential
equation of a G-function comes from geometry. In the light of this conjec-
ture, it is natural to ask whether a p-Mahler Hahn series whose coefficients
have a special growth has a special nature. For results in this direction, we
refer to Section 1.3.2.
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The theory of Mahler equations is a dynamic and fast-growing research
area. Since the pioneering work of Mahler in [Mah29, Mah30a, Mah30b], nu-
merous articles have been written on Mahler equations, which has known im-
portant recent developments; see for instance [Pel09, Ngu11, Ngu12, NN12,
BCR13, BBC15, Phi15, BCZ16, AB17, AF17, AF18, CDDM18, DHR18,
Roq18, Ada19, BCCD19, SS19, ADH21, Roq21, AZ22, FP22, MNS22, ABS23,
AF23, AZ23, Pou23, AF24a, AF24b, FR24a] and the references therein, to
name but a few recent articles. We believe that the results presented in the
present paper will be useful for further work on Mahler equations.

The main results of the present paper are described in Sections 1.1 and 1.2
below. In Section 1.1, we outline our main results about the structure of the
solutions of p-Mahler equations at 0. Theorem 4, which is the outcome of
this study, shows that any p-Mahler equation has a full basis of solutions
consisting of what we call generalized p-Mahler series. This result, of inde-
pendent interest, is a necessary prerequisite for the statement and proof of
our purity theorem, to which Section 1.2 is devoted. A number of comments,
especially in connection with our forthcoming paper [FR24b], are given in
Section 1.3.

1.1. Solving p-Mahler equations.

1.1.1. Hahn series and p-Mahler equations. Hahn series are a key ingredient
for solving p-Mahler equations of the form (1). We let H “ QppzQqq be
the field of Hahn series with coefficients in Q and value group Q. This field
contains the field

P “
ď

kPZě1

Qppz
1
˚ qq

of Puiseux series as a subfield but it is much bigger. Roughly speaking, Hahn
series are a generalization of Puiseux series allowing arbitrary exponents of
the indeterminate as long as the set that supports them forms a well-ordered
set; we refer to Section 2 for details. The interest of the Hahn series in our
context lies in the following result: the difference field pH , φpq, where φp is
the field automorphism of H sending fpzq on fpzpq, has a difference ring
extension pR, φpq with field of constants Rφp “ tf P R | φppfq “ fu equal
to Q such that

‚ for any c P Qˆ, there exists ec P R which is not a zero divisor
satisfying φppecq “ cec;

‚ there exists ` P R satisfying φpp`q “ `` 1;
‚ any p-Mahler equation of the form (1) has a full basis1 of solutions
y1, . . . , yd P R of the form

(2) yi “
ÿ

pc,jqPQˆˆZě0

fi,c,jec`
j

1We say that a p-Mahler equation of order µ as “full basis” of solutions of a given form, if
it has µ Q-linearly independent solutions of the given form.
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where the sum is finite and the fi,c,j belong to H .
We refer to Section 4.1 (and, in particular, to Proposition 25) for details and
references.

1.1.2. Generalized p-Mahler series and p-Mahler equations. The first main
result of this paper – namely Theorem 4 below – gives precise informations
on the Hahn series fi,c,j involved in (2). It ensures that they have a very
special form: they are linear combinations with coefficients in the ring of
p-Mahler Puiseux series of specific Hahn series, denoted by ξα,λ,a, that we
shall now introduce.

For any t P Zě1, α “ pα1, . . . , αtq P Ztě0, λ “ pλ1, . . . , λtq P pQ
ˆ
qt and

a “ pa1, . . . , atq P Qt
ą0, we consider the Hahn series

ξα,λ,apzq “
ÿ

k1,...,ktě1

kα1
1 ¨ ¨ ¨ kαtt λ

k1
1 λ

k1`k2
2 ¨ ¨ ¨λk1`¨¨¨`ktt z

´
a1

pk1
´

a2

pk1`k2
´¨¨¨´

at

pk1`k2`¨¨¨`kt P H .

When t “ 0, Ztě0, pQ
ˆ
qt and Qt

ą0 have just one element, namely the empty
vector pq and, in this case, we write ξpq,pq,pqpzq “ 1. In what follows, we let

Λ “
ď

tPZě0

Ztě0 ˆ pQ
ˆ
qt ˆQt

ą0

be the set of possible values for the parameters pα,λ,aq.

Definition 3. A generalized p-Mahler series is an element of R of the form

(3)
ÿ

pc,jqPQˆˆZě0

fc,jec`
j

where the sum has finite support and where the fc,j are Hahn series of the
following form

(4) fc,j “
ÿ

pα,λ,aqPΛ

fc,j,α,λ,aξα,λ,a

where the sum has finite support and where the fc,j,α,λ,a P P are p-Mahler
Puiseux series.

Theorem 4. Any p-Mahler equation of the form (1) has a full basis of
generalized p-Mahler series solutions, i.e., it has d Q-linearly independent
generalized p-Mahler series solutions y1, . . . , yd P R.

In fact, we will obtain this result as a by-product of the construction of
fundamental matrices of solutions of a very specific form of p-Mahler systems,
which are reminiscent of the fundamental matrices of solutions of differential
systems given by Turrittin’s theorem; as this requires further notations, we
say no more about this result of independent interest here and refer the
reader to Section 4 and, especially, to Theorem 27.
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Note that the decomposition (3) of a generalized p-Mahler series into a
H -linear combination of the ec`j is unique, but that this is not the case
for the decomposition (3)-(4) into a P-linear combination of the ξα,λ,aec`j .
The following definition and proposition remedy this problem.
Definition 5. We will say that the decomposition (3)-(4) is standard if the
a “ pa1, . . . , atq involved in the support of the sum in (4) have entries in
the set Nppq of positive rational numbers whose denominators are relatively
prime with p and whose numerators are not divisible by p.
Proposition 6. Any generalized p-Mahler series has a unique standard de-
composition.
Remark 7. We will prove (see Remark 22) that the Hahn series ξα,λ,a are
p-Mahler Hahn series. Since the property of being a solution of a p-Mahler
equation is stable by sums and product, we obtain that any generalized p-
Mahler series is a solution of a p-Mahler equation.
1.2. Purity Theorem. Our purity theorem (Theorem 11; see also Theorem
14) involves growth conditions for generalized p-Mahler series inspired by the
recent paper [ABS23] by B. Adamczewski, J. P. Bell and D. Smertnig. Let
us briefly recall their main result.

1.2.1. Growth of the coefficients of p-Mahler power series. In [ABS23], B.
Adamczewski, J. P. Bell and D. Smertnig study the asymptotic growth of
the coefficients of p-Mahler power series with coefficients in Q, as measured
by their logarithmic Weil height. Their main result is the following height
gap theorem, which shows that there are five different growth behaviors.
Theorem 8 ([ABS23, Prop. 5.2]). Any p-Mahler Puiseux series f “

ř

γPQ fγz
γ P

P satisfies one of the following mutually exclusive properties2:
pOΩ1q hpfγq P O X ΩpHpγqq;
pOΩ2q hpfγq P O X Ωplog2Hpγqq;
pOΩ3q hpfγq P O X ΩplogHpγqq;
pOΩ4q hpfγq P O X Ωplog logHpγqq;
pOΩ5q hpfγq P Op1q.
In this result and throughout this paper, Hpαq denotes the Weil height

of α P Q and hpαq “ logHpαq its logarithmic Weil height (see [Wal00] for
details and references). Roughly speaking, they measure the “complexity”
of the algebraic number α. For instance, when γ “ a

b is a rational number,
with a, b P Z relatively prime, Hpγq “ maxt|a|, |b|u. Moreover, for any
paγqγPQ, pbγqγPQ P RQ, the notation aγ “ Opbγq means that there exists
C ą 0 such that, for all but finitely many γ P Q, we have |aγ | ď C|bγ |
and the notation aγ “ Ωpbγq means that there exists c ą 0 such that, for
infinitely many γ P Q, we have |aγ | ą c|bγ |.

2Strictly speaking, this result is only proved for power series and for p-Mahler equations
with coefficients in Qpzq, but the extension to Puiseux series and to p-Mahler equations
with coefficients in Qpz

1
˚ q is straightforward.
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1.2.2. Purity theorem. Theorem 8 reveals fiveO-growth conditions for Puiseux
series: we say that f “

ř

γ fγz
γ P P satisfies

‚ pO1q if hpfγq “ OpHpγqq;
‚ pO2q if hpfγq “ Oplog2Hpγqq;
‚ pO3q if hpfγq “ OplogHpγqq;
‚ pO4q if hpfγq “ Oplog logHpγqq;
‚ pO5q if hpfγq “ Op1q.

We extend these O-growth conditions to generalized p-Mahler series as
follows.

Definition 9. We say that a generalized p-Mahler series f satisfies pP´Orq

for some r P t1, 2, 3, 4, 5u if it admits a decomposition of the form (3)-(4)
such that all the Puiseux series fc,j,α,λ,a satisfy pOrq.

Proposition 10. A generalized p-Mahler series f satisfies pP ´Orq if and
only if the Puiseux series fc,j,α,λ,a involved in its standard decomposition
satisfy pOrq.

It is clear that, for any r P t1, . . . , 4u, the condition pP´Or`1q is stronger
than pP ´ Orq in the sense that any generalized p-Mahler series satisfying
pP ´ Or`1q also satisfies pP ´ Orq. Moreover, it follows from Theorem 8
that any generalized p-Mahler series satisfies pP ´O1q. Therefore, the five
growth conditions pP ´O1q to pP ´O5q induce the following filtration on
the set of generalized p-Mahler series:

tgeneralized p-Mahler seriesu
“ tgeneralized p-Mahler series satisfying pP ´O1qu

Ľ tgeneralized p-Mahler series satisfying pP ´O2qu

Ľ tgeneralized p-Mahler series satisfying pP ´O3qu

Ľ tgeneralized p-Mahler series satisfying pP ´O4qu

Ľ tgeneralized p-Mahler series satisfying pP ´O5qu.

This filtration has 5 pieces. We are now ready to state our purity theorem
guarantying that the membership of a generalized p-Mahler series to one of
the three largest pieces of this filtration propagates to any other generalized
Mahler series solution of its minimal Mahler equation.

Theorem 11 (Purity Theorem). Let f be a generalized p-Mahler series
satisfying pP ´ Orq for some r P t1, 2, 3u. Then, the minimal p-Mahler
equation of f over K8 has a full basis of generalized p-Mahler series solutions
satisfying pP ´Orq.

Remark 12. 1) Considering the minimal p-Mahler equation is of course
essential for the conclusions of Theorem 11 to hold. The constant function
1, which satisfies pP ´O3q, is solution of the equation

pz ´ z2 ´ 2z3qypzq ` p´1´ z ` z2 ` 2z3 ` 2z4qypz2q ` p1´ 2z4qypz4q “ 0.
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Of course, this equation is not minimal with respect to 1. The rational func-
tion 1

1´2z is also solution of this equation but it is does not satisfy pP´O3q.
2) Theorem 11 do not extend to r P t4, 5u. See Section 7 for counterex-

amples.
3) In view of Theorem 8, it would be natural to consider, for any r P

t1, 2, 3, 4, 5u, the growth condition pP´OΩrq defined as follows: we say that
a generalized p-Mahler series f satisfies pP ´OΩrq if it satisfies pP ´Orq

and if at least one of the Puiseux series fc,j,α,λ,a involved in its standard
decomposition satisfies pOΩrq. We emphasize that it is not possible to replace
the condition pP ´Orq by pP ´OΩrq in Theorem 11. Indeed, the equation

p1´ 2zqypzq ` p´1` 2z ´ z2 ` 3z3 ´ 3z4qypz2q ` pz2 ´ 3z3 ` 3z4qypz4q “ 0

is the minimal 2-Mahler equation associated with some Laurent series

´z´1`3z`6z2`6z3`21z4`21z5`60z6`99z7`234z8`408z9`870z10`Opz11q

satisfying pP ´ OΩ1q. Another solution is the constant function 1, which
obviously does not satisfy pP ´OΩ1q.

1.3. Comments in connection with [FR24b]. In this Section, we gather
remarks related to our forthcoming paper [FR24b] where we will study the
growth of the coefficients of p-Mahler Hahn series.

1.3.1. Purity theorem in terms of Hahn series. Instead of considering the
generalized p-Mahler series as P-linear combinations of the ξα,λ,aec`j as we
did in Definition 9, we can see them as H -linear combinations of the ec`j
as in (3). This point of view leads to the following alternative extension of
the growth conditions pO1q to pO5q to generalized p-Mahler series and to an
alternative purity theorem.

Definition 13. We say that a generalized p-Mahler series f satisfies pH ´

Orq for some r P t1, 2, 3, 4, 5u if the Hahn series fc,j involved in the decom-
position (3) satisfy (the obvious extension to Hahn series of) pOrq.

The corresponding purity theorem reads as follows.

Theorem 14 (Purity Theorem, Hahn series version). Let f be a generalized
p-Mahler series satisfying pH ´Orq for some r P t1, 2, 3u. Then, the minimal
p-Mahler equation of f over K8 has a full basis of generalized p-Mahler series
solutions satisfying pH ´Orq.

This result will be proved in [FR24b]; actually, we will prove that Theorem
11 and Theorem 14 are equivalent, i.e., that conditions pP´Orq and pH ´

Orq are equivalent for r P t1, 2, 3u.

1.3.2. Regularity, automaticity and growth. In [FR24b], inspired by the work
of K. S. Kedlaya in [Ked17], we introduce notions of quasi-p-regular and
quasi-p-automatic Hahn series. These notions are extensions to Hahn se-
ries of the classical notions of p-regular and p-automatic series [AS03]. In
[FR24b], we characterize the quasi-p-regular and quasi-p-automatic Hahn



A PURITY THEOREM FOR MAHLER EQUATIONS 9

series among the p-Mahler Hahn series in terms of the growth of their coef-
ficients, generalizing results from [ABS23] relative to p-Mahler power series;
we prove that, for any p-Mahler Hahn series f , we have:

‚ f is quasi-p-regular if and only if f satisfies pH ´O3q;
‚ f is quasi-p-automatic if and only if f satisfies pH ´O5q.

Therefore, the case r “ 3 of Theorem 14 implies:

Corollary 15. The minimal p-Mahler equation of a quasi-p-regular Hahn
series has a full basis of solutions made of Q-linear combinations of terms of
the form fec`

j where f is a quasi-p-regular Hahn series, c P Qˆ and j P Zě0.

1.3.3. Growth of the coefficients of p-Mahler Hahn series. In [FR24b], we
establish a height gap theorem extending Theorem 8 to p-Mahler Hahn series.

1.4. Notations. In this Section, we list the main notations used in this
paper.

We let Z be the ring of relative integers, Q be the field of rational numbers,
R be the field of real numbers and C be the field of complex numbers. We
let Q be the algebraic closure of Q in C.

Given a subset E of R and δ P R, we let Eěδ denote the set of elements
of E greater than or equal to δ. The sets Eąδ, Eďδ and Eăδ are defined in
a similar way.

Given a ring R, we let Rˆ denote the multiplicative group of units of R.
We let Nppq denote the set of positive rational numbers whose denomina-

tors are relatively prime with p and whose numerators are not divisible by p.
Note that, for any positive rational number γ P Qą0, there exists an unique
integer k P Z such that pkγ P Nppq.

We set
Λ “

ď

tPZě0

Ztě0 ˆ pQ
ˆ
qt ˆQt

ą0

and

(5) Λst “
ď

tPZě0

Ztě0 ˆ pQ
ˆ
qt ˆ Ntppq.

We let Qrrzss be the ring of power series with coefficients in Q. We let
Qppzqq be the fraction field of Qrrzss, that is, the field of Laurent series over
Q. We let K8 “

Ť

kPZě1
Qpz

1
k q denote the field of ramified rational functions

with algebraic coefficients, P denote the field of Puiseux series over Q and
H denote the field of Hahn series over Q and value group Q. We have the
following tower of fields:

Qpzq Ă K8 Ă P Ă H .

For any F “
ř

γPQ Fγz
γ P MdpH q, we set

(6) F 0 “ F0, Fă0 “
ÿ

γPQă0

Fγz
γ , Fą0 “

ÿ

γPQą0

Fγz
γ ,
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so that
F “ Fă0 ` F 0 ` Fą0.

The notation R refers to a difference ring extension of H described in
Section 4.1

1.5. Organization of the paper. In Section 2, we recall the definition of
the field of Hahn series. In Section 3, we recall the dictionary between Mahler
equations, systems and modules. Section 4 is devoted to the construction
of a fundamental matrix of solutions at 0 of a given p-Mahler system. Our
main result with this respect is Theorem 27. It is the cornerstone of the
present paper. Theorem 4 is deduced from Theorem 27 at the end of Section
4. In Section 5, we establish the properties of the standard decomposition for
generalized p-Mahler series stated in the introduction, namely Propositions 6
and 10. One may skip this Section at first reading. Section 6 is devoted to
the proof of our purity theorem, Theorem 11. In Section 7, we give an
example showing that our purity theorem cannot be extended to conditions
pP ´O4q or pP ´O5q.

Acknowledgements. This work grew out of a question posed by Boris
Adamczewski, and benefited from discussions we had with him throughout
the genesis of this article. Our thanks go to him. The work of the second
author was supported by the ANR De rerum natura project, grant ANR-19-
CE40-0018 of the French Agence Nationale de la Recherche.

2. Hahn series

2.1. Definitions. We denote by

H “ QppzQqq

the field of Hahn series over Q and with value group Q. An element of H

is an pfγqγPQ P Q
Q whose support

suppppfγqγPQq “ tγ P Q | fγ ‰ 0u

is well-ordered (i.e., any nonempty subset of supppfq has a least element)
with respect to the restriction to suppppfγqγPQq of the usual order on Q. An
element pfγqγPQ of H is usually (and will be) denoted by

f “
ÿ

γPQ
fγz

γ .

The sum and product of two elements f “
ř

γPQ fγz
γ and g “

ř

γPQ gγz
γ of

H are given by
f ` g “

ÿ

γPQ
pfγ ` gγqz

γ

and

fg “
ÿ

γPQ

¨

˝

ÿ

γ1`γ2“γ

fγ1gγ2

˛

‚zγ .
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(The fact that the supports of f and g are well-ordered implies that there
are only finitely many pγ1, γ2q P QˆQ such that γ1`γ2 “ γ and fγ1gγ2 ‰ 0,
so the sums

ř

γ1`γ2“γ fγ1gγ2 are meaningful.)
The field H of Hahn series contains the field P of Puiseux series as a

subfield but it is much bigger. A typical example of Hahn series which is not
a Puiseux series is given by

ξ0,1,1 “
ÿ

kě0

z
´ 1

pk .

We let H ă0 be the set made of the f P H such that supppfq Ă Qă0.
We say that a family pfiqiPI of elements of H is summable if the following

properties are satisfied :
‚ the set

Ť

iPI supppfiq is well-ordered;
‚ for any γ P Q, the set

ti P I | γ P supppfiqu

is finite.
In this case, we define

ÿ

iPI

fi “
ÿ

iPI

˜

ÿ

γPQ
fi,γ

¸

zγ P H

where fi “
ř

γPQ fi,γz
γ . We have the following elementary lemma; see

[Roq24, Lemma 31].

Lemma 16. For any f P H ă0, the family pφkppfqqkď´1 of elements of H
is summable.

2.2. The Hahn series ξα,λ,a and the Q-vector spaces Vs. We shall now
focus our attention on the Hahn series ξα,λ,a introduced in Section 1.1.2 and
on some related Q-vector spaces that will play an essential role in the present
paper.

For any t P Zě1, α “ pα1, . . . , αtq P Ztě0, λ “ pλ1, . . . , λtq P pQ
ˆ
qt and

a “ pa1, . . . , atq P Qt
ą0, we consider the Hahn series

ξα,λ,apzq “
ÿ

k1,...,ktě1

kα1
1 ¨ ¨ ¨ kαtt λ

k1
1 λ

k1`k2
2 ¨ ¨ ¨λk1`¨¨¨`ktt z

´
a1

pk1
´

a2

pk1`k2
´¨¨¨´

at

pk1`k2`¨¨¨`kt P H .

To prove that this definition is legitimate and indeed gives a Hahn series,
we have to prove that, for any γ P Q, there are at most finitely many
pk1, . . . , ktq P Ztě1 such that γ “ ´ a1

pk1
´ a2

pk1`k2
´ ¨ ¨ ¨ ´ at

pk1`k2`¨¨¨`kt
and

that the support of ξα,λ,apzq is well-ordered; this follows from the following
lemma.

Lemma 17. For any t P Zě1 and a “ pa1, . . . , atq P Qt
ą0, we have :
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‚ the set
"

´
a1
pk1

´
a2

pk1`k2
´ ¨ ¨ ¨ ´

at
pk1`k2`¨¨¨`kt

| pk1, . . . , ktq P Ztě1
*

is well-ordered;
‚ for any γ P Q, there are at most finitely many pk1, . . . , ktq P Ztě1 such
that

γ “ ´
a1
pk1

´
a2

pk1`k2
´ ¨ ¨ ¨ ´

at
pk1`k2`¨¨¨`kt

.

Proof. We argue by induction on t P Zě1.
Base case t “ 1. Lemma 17 is obvious for t “ 1.

Inductive step tÑ t` 1. We assume that Lemma 17 holds true for some
t P Zě1. We want to prove that, for any a “ pa1, . . . , at`1q P Qt`1

ą0 ,
(i) the set
"

´
a1
pk1

´
a2

pk1`k2
´ ¨ ¨ ¨ ´

at`1
pk1`k2`¨¨¨`kt`1

| pk1, . . . , kt`1q P Zt`1ě1

*

is well-ordered;
(ii) for any γ P Q, there are at most finitely many pk1, . . . , kt`1q P Zt`1ě1

such that

γ “ ´
a1
pk1

´
a2

pk1`k2
´ ¨ ¨ ¨ ´

at`1
pk1`k2`¨¨¨`kt`1

.

By induction hypothesis (applied to pa2, . . . , at`1q P Qt
ą0),

f “
ÿ

k2,...,kt`1ě1

z
´a1´

a2

pk2
´¨¨¨´

at`1

p
k2`¨¨¨`kt`1

is a well-defined element of H ă0. Lemma 16 guaranties that pφk1p pfqqk1ď´1
is summable; this means exactly that :

(iii) the set
ď

k1PZě1

supppφk1p pfqq “

"

´
a1
pk1

´
a2

pk1`k2
´ ¨ ¨ ¨ ´

at`1
pk1`k2`¨¨¨`kt`1

| pk1, . . . , kt`1q P Zt`1ě1

*

is well-ordered;
(iv) for any γ P Q, there are at most finitely many k1 P Zě1 such that

γ P supppφk1p pfqq “
"

´
a1
pk1

´
a2

pk1`k2
´ ¨ ¨ ¨ ´

at`1
pk1`k2`¨¨¨`kt`1

| pk2, . . . , kt`1q P Ztě1
*

.

Now, (iii) ensures that (i) is true. Moreover, (iv) combined with the fact that,
by induction, for any k1 P Zě1, there are finitely many pk2, . . . , kt`1q P Ztě1
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such that γ “ ´ a1
pk1
´ a2

pk1`k2
´ ¨ ¨ ¨ ´

at`1

pk1`k2`¨¨¨`kt`1
, implies that (ii) is true.

This concludes the induction. �

We extend the notation ξα,λ,a to the case t “ 0 as follows: Z0
ě0 “ pQ

ˆ
q0 “

Q0
ą0 “ tpqu is the set with one element pq and we set

ξpq,pq,pqpzq “ 1.

For any s P Zě0, we consider the following Q-vector space

Vs “ SpanQ

´

tz´γξpq,pq,pq | γ P Qą0u

Y
ď

tPt1,...,su

tz´γξα,λ,a | γ P Qě0, pα,λ,aq P Ztě0 ˆ pQ
ˆ
qt ˆQt

ą0u

¯

.

Of course, pVsqsPZě0 is a non decreasing sequence of Q-vector spaces; its limit
is denoted by

V “
ď

sPZě0

Vs

“ SpanQ

´

tz´γξpq,pq,pq | γ P Qą0u(7)

Y
ď

tPZě1

tz´γξα,λ,a | γ P Qě0, pα,λ,aq P Ztě0 ˆ pQ
ˆ
qt ˆQt

ą0u

¯

.

We will now state and prove a few technical lemmas about the Hahn series
ξα,λ,a and the Q-vector spaces Vs that will be used later in the paper. The
reader can ignore them on first reading and return to them when they are
used in later demonstrations.

Lemma 18. The map φp : H Ñ H induces a Q-linear automorphism of
Vs.

Proof. Follows straightforwardly from the equality

φppξα,λ,apzqq “ ξα,λ,papzq.

�

Lemma 19. For any c P Qˆ and α P Zě0, the Q-linear map

H ă0 Ñ H ă0

h ÞÑ
ÿ

kď´1

kαckφkpphq

is well-defined and sends Vs in Vs`1.

Proof. The fact that this map is well-defined follows immediately from Lem-
ma 16. Its Q-linearity is obvious. It remains to prove that this map sends Vs
in Vs`1. ByQ-linearity, it is sufficient to consider the case h “ z´γξα,λ,a with
α “ pα1, . . . , αtq P Ztě0, λ “ pλ1, . . . , λtq P pQ

ˆ
qt and a “ pa1, . . . , atq P Qt

ą0
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for some t P t0, . . . , su and γ P Qě0 (resp. γ P Qą0) if t ě 1 (resp. t “ 0). If
t “ 0, we have

ÿ

kď´1

kαckφkppz
´γq “

ÿ

kě1

p´kqαc´kz
´

γ

pk “ p´1qαξpαq,pc´1q,pγqpzq P V1 Ă Vs`1

as claimed. If t ě 1, we have

ÿ

kď´1

kαckφkppz
´γξα,λ,apzqq

“
ÿ

k0ě1

p´k0q
αc´k0z

´
γ

pk0 ξα,λ,apz
1

pk0 q

“ p´1qα
ÿ

k0ě1

ÿ

k1,...,ktě1

kα0 k
α1
1 ¨ ¨ ¨ kαtt c

´k0λk11 ¨ ¨ ¨λ
k1`¨¨¨`kt
t

ˆ z
´

γ

pk0
´

a1

pk0`k1
´

a2

pk0`k1`k2
´¨¨¨´

at

pk0`k1`k2`¨¨¨`kt

“ p´1qα
ÿ

k0,k1,...,ktě1

kα0 k
α1
1 ¨ ¨ ¨ kαtt

ˆ

1

cλ1 ¨ ¨ ¨λt

˙k0

λk0`k11 ¨ ¨ ¨λk0`k1`¨¨¨`ktt

ˆ z
´

γ

pk0
´

a1

pk0`k1
´

a2

pk0`k1`k2
´¨¨¨´

at

pk0`k1`k2`¨¨¨`kt

“ p´1qαξβ,τ ,b P Vs`1

with β “ pα, α1, . . . , αtq, τ “
´

1
cλ1¨¨¨λt

, λ1, . . . , λt

¯

and b “ pγ, a1, . . . , atq.
�

Lemma 20. For any s, s1 P Zě0 and any phpzq, h1pzqq P Vs ˆ Vs1 , we have
hpzqh1pzq P Vs`s1 .

Proof. We first note that

(8) Vs “ SpanQ

´

tz´γrξpq,pq,pq | γ P Qą0u

Y
ď

tPt1,...,su

tz´γrξα,λ,a | γ P Qě0, pα,λ,aq P Ztě0 ˆ pQ
ˆ
qt ˆQt

ą0u

¯

where

rξα,λ,apzq “
ÿ

1ďk1ă¨¨¨ăkt

kα1
1 ¨ ¨ ¨ kαtt λ

k1
1 λ

k2
2 ¨ ¨ ¨λ

kt
t z

´
a1

pk1
´

a2

pk2
´¨¨¨´

at

pkt P H

with the convention rξpq,pq,pqpzq “ 1. Indeed, (8) follows immediately from the
following facts:
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‚ any ξα,λ,a is a Q-linear combinaison of certain rξα1,λ,a with α1 P Ztě0
as the following formula clearly shows:

(9) ξα,λ,apzq “
ÿ

k1,...,ktě1

kα1
1 ¨ ¨ ¨ kαtt λ

k1
1 λ

k1`k2
2 ¨ ¨ ¨λk1`¨¨¨`ktt z

´
a1

pk1
´

a2

pk1`k2
´¨¨¨´

at

pk1`k2`¨¨¨`kt

“
ÿ

1ďl1ă¨¨¨ălt

lα1
1 pl2 ´ l1q

α2 ¨ ¨ ¨ plt ´ lt´1q
αtλl11 λ

l2
2 ¨ ¨ ¨λ

lt
t z
´
a1

pl1
´
a2

pl2
´¨¨¨´

at

plt ;

‚ any rξα,λ,a is a Q-linear combinaison of certain ξα1,λ,a with α1 P Ztě0
as the following formula clearly shows:

(10) rξα,λ,apzq “
ÿ

1ďk1ă¨¨¨ăkt

kα1
1 ¨ ¨ ¨ kαtt λ

k1
1 λ

k2
2 ¨ ¨ ¨λ

kt
t z

´
a1

pk1
´

a2

pk2
´¨¨¨´

at

pkt

“
ÿ

l1,...,ltě1

lα1
1 pl1 ` l2q

α2 ¨ ¨ ¨ pl1 ` ¨ ¨ ¨ ` ltq
αtλl11 λ

l1`l2
2 ¨ ¨ ¨λl1`¨¨¨`ltt

ˆ z
´
a1

pl1
´

a2

pl1`l2
´¨¨¨´

at

pl1`¨¨¨`lt .

Thus, it is sufficient to prove that, for any t, t1 P Zě1, for any α P Ztě0,
λ P Qt and a P Qt

ą0, for any α1 P Zt1ě0, λ
1 P Qt1 and a1 P Qt1

ą0, we have
rξα,λ,apzqrξα1,λ1,a1pzq P Vt`t1 . We prove this in the case t “ t1 “ 2; the general
case is similar but requires unpleasant notations. We have

(11) rξα,λ,apzqrξα1,λ1,a1pzq

“
ÿ

1ďk1ăk2
1ďk11ăk

1
2

kα1
1 kα2

2 k1
α11
1 k1

α12
2 λk11 λ

k2
t λ

1k
1
1

1 λ
1k
1
2

2 z
´

a1

pk1
´

a2

pk2
´

a11

p
k11
´

a12

p
k12 .

But, this sum can be decomposed as follows:
ÿ

1ďk1ăk2
1ďk11ăk

1
2

“
ÿ

1ďk1ăk2ăk11ăk
1
2

`
ÿ

1ďk1ăk11ăk2ăk
1
2

`
ÿ

1ďk1ăk11ăk
1
2ăk2

(12)

`
ÿ

1ďk11ăk1ăk2ăk
1
2

`
ÿ

1ďk11ăk1ăk
1
2ăk2

`
ÿ

1ďk11ăk
1
2ăk1ăk2

(13)

`
ÿ

1ďk1“k11ăk2ăk
1
2

`
ÿ

1ďk1“k11ăk
1
2ăk2

`
ÿ

1ďk11ăk1“k
1
2ăk2

(14)

`
ÿ

1ďk1ăk2“k11ăk
1
2

`
ÿ

1ďk1ăk11ăk2“k
1
2

`
ÿ

1ďk11ăk1ăk2“k
1
2

(15)

`
ÿ

1ďk11“k1ăk2“k
1
2

(16)
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Each sum in (the right hand side of) (12) and (13) is equal to rξβ,µ,b for some
β P Z4

ě0, µ P Q4 and b P Q4
ą0. Each sum in (14) and (15) is equal to rξβ,µ,b

for some β P Z3
ě0, µ P Q

3 and b P Q3
ą0. The sum in (16) is equal to rξβ,µ,b for

some β P Z2
ě0, µ P Q

2 and b P Q2
ą0. Hence, (11) is in V4, as expected. �

Lemma 21. For every j P Z, α P Zsě0, λ P Q
s and a P Qs

ą0, we have

(17) ξα,λ,apz
pj q “ pλ1 ¨ ¨ ¨λsq

jξα,λ,apzq

`
ÿ

α1Pt0,...,α1´1uˆZs´1
ě0 ,λ

1PQs,a1PQsą0

pα1,λ1,a1pzqξα1,λ1,a1pzq

`
ÿ

pα1,λ1,a1qP
Ť

tPt0,...,s´1u Ztě0ˆQ
t
ˆQtą0

pα1,λ1,a1pzqξα1,λ1,a1pzq

for some pα1,λ1,a1pzq P Pă0 “ Qrz´
1
˚ să0. Moreover, if a P Zsą0 and j P Zě1,

then we have a decomposition of the form (17) such that the pα1,λ1,a1pzq belong
to Qrz´1să0 and such that the a1 involved in the support of the sums in (17)
have entries in Zą0.

Proof. Let us first prove the result for j “ 1. Let λ0 “ λ1 ¨ ¨ ¨λs. We have

ξα,λ,apz
pq

“ λ0
ÿ

k1ě0,k2,...,ksě1

pk1 ` 1qα1kα2
2 ¨ ¨ ¨ kαss λk11 ¨ ¨ ¨λ

k1`¨¨¨`ks
s z

´
a1

pk1
´¨¨¨´

as

pk1`k2`¨¨¨`ks

“ λ0

α1
ÿ

i“0

ˆ

α1

i

˙

ÿ

k1,...,ksě1

ki1k
α2
2 ¨ ¨ ¨ kαss λk11 ¨ ¨ ¨λ

k1`¨¨¨`ks
s z

´
a1

pk1
´¨¨¨´

as

pk1`k2`¨¨¨`ks

`λ0
ÿ

k2,...,ksě1

kα2
2 ¨ ¨ ¨ kαss λk22 ¨ ¨ ¨λ

k2`¨¨¨`ks
s z

´a1´
a2

pk2
´¨¨¨´

as

pk2`¨¨¨`ks

and, hence,

ξα,λ,apz
pq ´ λ1 ¨ ¨ ¨λsξα,λ,apzq

“ λ0

α1´1
ÿ

i“0

ˆ

α1

i

˙

ξpi,α2,...,αsq,λ,a ` λ0z
´a1ξβ,τ ,b

where β “ pα2, . . . , αsq, τ “ pλ2, . . . , λsq and b “ pa2, . . . , asq. The latter
expression has the desired form.

The case of an arbitrary j P Zě1 follows from an easy induction using the
particular case j “ 1.



A PURITY THEOREM FOR MAHLER EQUATIONS 17

We now consider the case j “ ´1. We have

ξα,λ,apz
p´1
q

“ λ´10

ÿ

k1ě2,k2,...,ksě1

pk1 ´ 1qα1kα2
2 ¨ ¨ ¨ kαss λk11 ¨ ¨ ¨λ

k1`¨¨¨`ks
s z

´
a1

pk1
´¨¨¨´

as

pk1`k2`¨¨¨`ks

“

α1
ÿ

i“0

γi
ÿ

k1,...,ktě1

ki1k
α2
2 ¨ ¨ ¨ kαss λk11 ¨ ¨ ¨λ

k1`¨¨¨`ks
s z

´
a1

pk1
´¨¨¨´

as

pk1`k2`¨¨¨`ks

´

α1
ÿ

i“0

γiλ0
ÿ

k2,...,ktě1

kα2
2 ¨ ¨ ¨ kαss λk22 ¨ ¨ ¨λ

k2`¨¨¨`ks
s z

´
a1
p
´

a2

pk2`1´¨¨¨´
as

pk2`¨¨¨`ks`1

where γi “ λ´10 p´1qi´α1
`

α1

i

˘

. Hence

ξα,λ,apz
p´1
q ´ pλ1 ¨ ¨ ¨λsq

´1ξα,λ,apzq

“

α1´1
ÿ

i“0

γiξpi,α2,...,αsq,λ,a ´

α1
ÿ

i“0

γiλ0z
´
a1
p ξβ,τ ,b

where β “ pα2, . . . , αsq, τ “ pλ2, . . . , λsq and b “ pa2{p, . . . , as{pq. The
latter expression has the desired form.

The case of an arbitrary j P Zď´1 follows from an easy induction using
the particular case j “ ´1. �

Remark 22. It is easily seen that, if f is a p-Mahler Hahn series and if g
is a Hahn series such that g ´ aφppgq “ f for some a P K8, then g is a p-
Mahler Hahn series as well. Using this fact and the case j “ 1 of Lemma 21,
one can prove by induction on s and on α1 (with the notations of loc. cit.)
that the ξα,λ,a are p-Mahler Hahn series.

3. Equations, systems and modules

We recall that we let

K8 “ Qpz
1
˚ q “

ď

kPZě1

Qpz
1
k q

denote the field of ramified rational functions with coefficients in Q. We
consider the field automorphism

φp : K8 Ñ K8
fpzq ÞÑ fpzpq.

The pair pK8, φpq is a difference field. We let pK,ψq be a difference field
extension of pK8, φpq, i.e., K is a field extension of K8 and ψ is a field
automorphism of K extending φp. Here are some examples:

‚ K “ K8;
‚ K “ P the field of Puiseux series over Q;
‚ K “ H the field of Hahn series over Q with value group Q;
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endowed with the natural extension of φp still denoted by φp and given, for
any f “

ř

γPQ fγz
γ P K, by

φppfq “
ÿ

γPQ
fγz

pγ .

In what follows, we will often drop φp out of our notations, e.g., we will
simply speak of the difference field extension K of K8 instead of the differ-
ence field extension pK,ψq of pK8, φpq.

3.1. Equations. By p-Mahler equation over K, we mean an equation of the
form

(18) a0f ` a1φppfq ` ¨ ¨ ¨ ` adφ
d
ppfq “ 0

with a0, . . . , ad P K and a0ad ‰ 0.

3.2. Systems. By p-Mahler system over K, we mean a system of the form

φppF q “ AF

with A P GLdpKq.
We say that two systems φppF q “ AF and φppF q “ BF with A,B P

GLdpKq are K-equivalent if there exists F P GLdpKq such that φppF qA “
BF . Such an F is called a gauge transformation.

3.3. From equations to systems. Sometimes we will start with an equa-
tion, but it will be more convenient to work with a system. We recall that
any p-Mahler equation can be converted into a p-Mahler system as follows:
the equation (18) is equivalent to the system

(19) φppF q “ AF

where

F “

¨

˚

˚

˚

˝

f
φppfq

...
φdppfq

˛

‹

‹

‹

‚

and A “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 ¨ ¨ ¨ 0 1
´a0
ad

´a1
ad

¨ ¨ ¨ ¨ ¨ ¨ ´
ad´1

ad

˛

‹

‹

‹

‹

‹

‹

‚

.

3.4. Modules. We denote by

DK “ Kxφp, φ
´1
p y

the Ore algebra of noncommutative Laurent polynomials with coefficients in
K such that, for all f P K,

φpf “ φppfqφp.

A left DK-module of finite length will be called a p-Mahler module (over
K). Note that a left DK-module has finite length if and only if the K-vector
space obtained by restriction of scalars has finite dimension; by definition,
the rank of a p-Mahler module is its dimension as a K-vector space.
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Given two p-Mahler modules M and N , the notation M – N means that
M and N are isomorphic as left DK-modules.

3.5. From systems to modules and vice-versa. It is sometimes useful to
work with p-Mahler modules instead of p-Mahler systems and vice-versa. Let
us briefly recall the correspondence between p-Mahler systems and p-Mahler
modules.

One can associate to any p-Mahler system

(20) φppY q “ AY

with A P GLdpKq a p-Mahler module MA as follows. We consider the map
ΦA : Kd Ñ Kd defined by

ΦApmq “ Aφppmq

(here φp acts component-wise on the elements of Kd seen as column vectors).
The p-Mahler module MA is then defined as follows: the underlying abelian
group is Kd (its elements being seen as column vectors) and the action of
L “

ř

aiφ
i
p P DK on m PMA is given by

Lm “

´

ÿ

aiφ
i
p

¯

m “
ÿ

aiΦ
i
Apmq.

Conversely, we can attach to any p-Mahler module M , a p-Mahler system
via the choice of a K-basis B “ pe1, . . . , edq of M : the p-Mahler system
associated with M , with respect to B, is φppY q “ AY where A P GLdpKq
represents the action of φp on B (i.e., the jth column of A represents φppejq
in the basis B). We have M –MA.

It is easily seen that two p-Mahler systems φppY q “ AY and φppY q “ BY
with A,B P GLdpKq are K-equivalent, i.e., that there exists F P GLdpKq
such that φppF qA “ BF , if and only if the corresponding p-Mahler modules
MA and MB are isomorphic.

Last, we recall the following classical result, known as the cyclic vector
lemma, ensuring that any Mahler module “comes form” an equation.

Proposition 23. For any p-Mahler module M , there exists L P DK such
that M – DK{DKL.

For a proof, see for instance [HS99, Theorem B.2].

4. Fundamental matrices of solutions of Mahler systems and
proof of Theorem 4

In this Section, we first show that any p-Mahler system

(21) φppY q “ AY

with A P GLdpPq admits a fundamental matrix of solutions of the form

Y0 “ FeC
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where F is an invertible d ˆ d matrix with coefficients in H and where eC
is an invertible d ˆ d matrix with coefficients in a certain difference ring
extension R of H satisfying

φppeCq “ CeC

for some C P GLdpQq. The principal aim of the remainder of this Section is
to study in greater detail the nature of F . Our main results with this respect,
namely Theorem 27 and Theorem 29, provide us with a decomposition of the
form F “ F1F2 where F1 P GLdpPq and where F2 P GLdpVq satisfy certain
nice properties. These results will be of great importance for the proofs of
the main results of the present paper.

The difference ring extension R of H and the matrix eC alluded to above
are built in Section 4.1. Theorems 27 and 29 are stated in Section 4.2.
The remainder of Section 4 is devoted to the proofs of these results and,
eventually, to the proof of Theorem 4.

4.1. A fundamental matrix of solutions of the form Y0 “ FeC . Our
first objective is to construct, for any C P GLdpQq, a matrix eC satisfying
φppeCq “ CeC . In order to do so, we first need to introduce a certain
difference ring extension R of H .

4.1.1. The difference ring R. In what follows, we let R be a difference ring
extension of H with field of constants Q such that:

‚ there exists ` P R satisfying φpp`q “ `` 1;
‚ for any c P Qˆ, there exists ec P R, which is not a zero divisor,
satisfying φppecq “ cec.

Such a ring R exists. Indeed, let pXcqcPQˆ and Y be indeterminates over
H , and consider the quotient ring

R :“ H rpXcqcPQˆ , Y s{I

of the polynomial ring H rpXcqcPQˆ , Y s by its ideal I generated by tXcXd´

Xcd | c, d P Qˆu Y tX1 ´ 1u. Let ec (resp. `) be the image of Xc (resp. Y )
in R, so that

R “ H rpecqcPQˆ , `s.

We endow R with its unique ring automorphism φp extending φp : H Ñ H
and such that

@c P Qˆ, φppecq “ cec and φpp`q “ `` 1.

Then, pR, φpq is a difference ring extension of pH , φpq with field of constants
Q. We omit the proof of this assertion as it is entirely similar to the proof
of the second assertion of [Roq18, Theorem 35].
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4.1.2. Definition of eC . We are now ready to construct a matrix eC satisfying
φppeCq “ CeC .

Lemma 24. For any C P GLdpQq, there exists eC P MdpRq such that

(22) φppeCq “ CeC ,

whose determinant det eC is not a zero divisor of R and whose entries are
Q-linear combinaisons of elements of the form ec`

j with c P SpecpCq and
j P t0, . . . , d´ 1u.

Proof. Let C “ UD be the multiplicative Dunford-Jordan decomposition of
the matrix C:

‚ D P GLdpQq is semisimple,
‚ U P GLdpQq is unipotent,
‚ and UD “ DU .

We recall that D and U belong to QrCs. We set

`rks “

"

`

`
k

˘

“
`p`´1q¨¨¨p`´k`1q

k! if k P Zě0,
0 if k P Zď´1.

It follows from the equality φpp`q “ `` 1 that

φpp`
rksq “ `rks ` `rk´1s

and that (the finite sum)

eU “
ÿ

kě0

`rkspU ´ Idq
k P MdpRq

satisfies
φppeU q “ UeU .

Note that eU belongs to RrU s Ă RrCs and that det eU “ 1.
Moreover, we consider P P GLdpQq and c1, . . . , cd P Q

ˆ such that

D “ P diagpc1, . . . , cdqP
´1

and we set
eD “ P diagpec1 , . . . , ecnqP

´1 P MdpRq.

This eD is independent of P and satisfies

φpeDq “ DeD.

Moreover, det eD “ ec1 ¨ ¨ ¨ ecd is not a zero divisor.
Since DU “ UD, the matrices eU and D commute and it follows from

what precedes that
eC “ eUeD

has the required properties. �
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4.1.3. Existence of Y0 “ FeC . According to [Roq21, Theorem 2], there exist
C P GLdpQq and F P GLdpH q such that

(23) AF “ φppF qC.

Considering the matrix eC given by Lemma 24 and combining (22) and (23),
we obtain that

Y0 “ FeC P MdpRq

satisfies
φppY0q “ AY0

and that detY0 “ detF det eC is not a zero divisor of R.
Note the following consequence in terms of p-Mahler equations.

Proposition 25. Any p-Mahler equation of the form (1) has d Q-linearly
independent solutions y1, . . . , yd of the form (2).

Proof. Indeed, the system φppY q “ AY associated to this equation (as in
Section 3.3) has a fundamental matrix of solutions of the form Y0 “ FeC P
MdpRq. The d elements of the first line of Y0 are Q-linearly independent
solutions of equation (1) of the expected form. �

The aim of what follows is to obtain more information on F . This is
achieved with Theorem 27 and Theorem 29 below. In order to state with
exactness these results, we first need to introduce some notation.

4.2. Nature of the coefficients of F . For any s P Zě1 and r “ pr1, . . . , rsq P
Zsě1 such that

r1 ` ¨ ¨ ¨ ` rs “ d,

we let Vr be the set of matrices of the form

(24) F “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ir1
. . .

Iri Fi,j

0
. . .

Irj
. . .

Irs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P GLdpH q

such that
Fi,j P Mri,rj pVj´iq.

Lemma 26. Vr is a subgroup of GLdpH q.

Proof. Of course, Vr contains Id. The fact that Vr is invariant by product
follows straightforwardly from Lemma 20 and from the fact that the sets Vj´i
are Q-vector spaces. It remains to prove that Vr is invariant by inversion.



A PURITY THEOREM FOR MAHLER EQUATIONS 23

Consider F P Vr. The (additive) Dunford-Jordan decomposition of F is
given by F “ Id `N where

N “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0r1
. . .

0ri Fi,j

0
. . .

0rj
. . .

0rs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Thus, F´1 “
řd
k“0p´1qkNk. But, it follows from Lemma 20 that

Nk “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0r1
. . .

0ri Nk;i,j

0
. . .

0rj
. . .

0rs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

with Nk;i,j P Mri,rj pVj´iq. Whence the result. �

The rest of Section 4 is devoted to the proof of the following results.

Theorem 27. The Mahler system (21) has a fundamental matrix of solu-
tions of the form

F1F2eC

where

‚ F1 P GLdpPq;
‚ F2 P Vr for some s P Zě1 and r “ pr1, . . . , rsq P Zsě1 such that
r1 ` ¨ ¨ ¨ ` rs “ d;

‚ C P GLdpQq is a block upper triangular matrix of the form

C “

¨

˚

˝

A1 ˚

. . .
0 As

˛

‹

‚

for some pA1, . . . , Asq P GLr1pQq ˆ ¨ ¨ ¨ ˆGLrspQq.
Moreover, we can choose F1 and F2 in such a way that

F1pz
pqΘpzq “ ApzqF1pzq and F2pz

pqC “ ΘpzqF2pzq
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for some block upper triangular matrix of the form

(25) Θ “

¨

˚

˝

A1 ‹

. . .
0 As

˛

‹

‚

with coefficients in
Ť

γPQą0
Qrz´γs and constant term C.

Remark 28. One can always choose s “ d and r1 “ ¨ ¨ ¨ “ rd “ 1 in
Theorem 27 (follows from Theorem 27 itself by triangularizing the matrices
Ai). However, we have stated Theorem 27 in this form for the following
reason: if L is a Mahler operator associated to the system (21) by the cyclic
vector lemma, then the proof of Theorem 27 shows that we can take for
r1, . . . , rs the multiplicities of the slopes of L. This more precise information
will not be exploited in this paper but could be of interest for other purposes.

Theorem 29. Assume that (21) has a fundamental matrix of solutions of
the form F 1eC1 with F 1 P GLdpH q and C 1 P GLdpQq. Let F1, F2, C,Θ be
given by Theorem 27. Then, there exists a matrix R P GLdpQq such that

‚ C 1 “ R´1CR,
‚ F 1 “ F1F

1
2, with F

1
2 “ F2R P GLdpVd´1q

‚ F 12pz
pqC 1 “ ΘpzqF 12pzq

The proof of Theorem 27 is given in Section 4.6. It rests on intermediate
results given in the next three Sections. The proof of Theorem 29 is given
in Section 4.7.

4.3. First step of the proof of Theorem 27: triangularization by
blocks. In this section and in the rest of the paper, we will use the following
notation: for any A,F P GLdpH q, we set

F rAs :“ φppF qAF
´1.

The first step of our proof of Theorem 27 consists in proving the following
result.

Proposition 30. Consider a Mahler system

(26) φppY q “ AY

with A P GLdpPq. There exist s P Zě1, r “ pr1, . . . , rsq P Zsě1 such that
r1` ¨ ¨ ¨ ` rs “ d, pA1, . . . , Asq P GLr1pQq ˆ ¨ ¨ ¨ ˆGLrspQq and F P GLdpPq

such that

(27) F rAs “

¨

˚

˝

A1 ˚

. . .
0 As

˛

‹

‚

.

Remark 31. One can always choose s “ d and r1 “ ¨ ¨ ¨ “ rd “ 1. However,
we have stated Theorem 30 in this form for the following reason: if L is a
Mahler operator associated to the system (26), then the proof of Proposition
30 shows that we can take for r1, . . . , rs the multiplicities of the slopes of L.
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The proof of Proposition 30 is given in Section 4.3.3 below. Actually,
we will not prove this result directly but a reformulation of it in terms of
p-Mahler modules given in Proposition 32.

4.3.1. Reformulation of Proposition 30 in terms of p-Mahler modules. Propo-
sition 30 can be reformulated in terms of p-Mahler modules as follows:

Proposition 32. Let M be a p-Mahler module over P of rank d ě 1. There
exist s P Zě1 and r “ pr1, . . . , rsq P Zsě1 such that r1 ` ¨ ¨ ¨ ` rs “ d and a
filtration

t0u “M0 ĂM1 Ă ¨ ¨ ¨ ĂMs “M

by p-Mahler sub-modules of M such that, for all i P t0, . . . , s´ 1u,

Mi`1{Mi –MAi

for some Ai P GLripQq.

Let us explain why this result is equivalent to Proposition 30.
Let us first assume that Proposition 30 is true. Let M be a p-Mahler

module over P of rank d ě 1. As recalled in (and with the notations of)
Section 3, there exists A P GLdpPq such that M –MA. By Proposition 30,
M – MB for some block upper triangular matrix B P GLdpPq of the form
(27). Of course, the existence of a filtration of M as in Proposition 32 is
equivalent to the existence of a similar filtration for MB and it is clear that
MB has such a filtration: if pe1, . . . , edq is the canonical basis of Pd then

t0u “ N0 Ă N1 “ ‘
r1
k“1Pek Ă N2 “ ‘

r1`r2
k“1 Pek Ă ¨ ¨ ¨

¨ ¨ ¨ Ă Ns “ ‘
r1`r2`¨¨¨`rs
k“1 Pek “MB

is a filtration by submodules of MB such that

Ni`1{Ni –MAi

for all i P t0, . . . , s´ 1u. This shows that Proposition 30 implies Proposition
32.

Conversely, assume that Proposition 32 is true. Let A P GLdpPq and con-
sider the p-Mahler module MA. By Proposition 32, there exists a filtration

t0u “ N0 Ă N1 Ă ¨ ¨ ¨ Ă Ns “MA

by submodules of MA of rank ri such that, for all i P t0, . . . , s´ 1u,

Ni`1{Ni –MAi

for some Ai P GLripQq. Let B “ pe1, . . . , edq be a basis of M such that, for
all i P t1, . . . , su, pe1, . . . , er1`¨¨¨`riq is a basis of Ni and such that the action
of φp on Ni`1{Ni is represented in the basis eri`1 ` Ni, . . . , eri`1 ` Ni by
Ai. Then, the p-Mahler system φpY “ BY associated to M with respect to
the basis B (see Section 3) has the form (27). Since the p-Mahler systems
φpY “ AY and φpY “ BY are P-equivalent, this yields the desired result.
This shows that Proposition 32 implies Proposition 30.
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This concludes the proof of the equivalence between Propositions 30 and
32.

We will prove Proposition 32 (and, hence, Proposition 30) in Section 4.3.3.
This proof will rest on a factorization property of p-Mahler operators given
in the next section.

4.3.2. Factorization of p-Mahler operators. Consider a p-Mahler operator

(28) L “ adφ
d
p ` ad´1φ

d´1
p ` ¨ ¨ ¨ ` a0 P DP

with coefficients a0, . . . , ad P P such that a0ad ‰ 0. We let
‚ µ1 ă ¨ ¨ ¨ ă µs be the slopes of L with respective multiplicities
r1, . . . , rs;

‚ ci,1, . . . , ci,ri P Q
ˆ be the exponents (repeated with multiplicities) of

L attached to the slope µi.
See [Roq24, Section 4] for these notions. For any f “

ř

γPQ fγz
γ P H , we

let valz f “ min supp f P QY t`8u denote the valuation of f and, if f ‰ 0,
cldz f “ fvalz f P Qzt0u denote the coefficient of least degree.

Proposition 33. The operator L has a factorization of the form

L “ aLs ¨ ¨ ¨L1

where
‚ a P Pˆ is such that valz a “ valz a0;
‚ cldz a “

śk
i“1

śri
j“1p´ci,jq

´1 cldz a0;
‚ the Li are given by

Li “ pz
νiφp ´ ci,riqh

´1
i,ri
¨ ¨ ¨ pzνiφp ´ ci,1qh

´1
i,1

for some hi,j P Pˆ with valz hi,j “ 0, cldz hi,j “ 1 and

νi “ pp´ 1qppr1`¨¨¨`ri´1pµi ´ µi´1q ` ¨ ¨ ¨ ` p
r1pµ2 ´ µ1q ` µ1q.

Proof. This result is proved in [Roq24, Proposition 15] over H instead of
P; the proof in the present case is entirely similar. �

4.3.3. Proof of Proposition 32. According to the cyclic vector lemma (Propo-
sition 23), there exists L P DP such that M – DP{DPL. The factorization

L “ aLs ¨ ¨ ¨L1

given by Proposition 33 induces a filtration

t0u “M0 ĂM1 Ă ¨ ¨ ¨ ĂMs “M

by p-Mahler sub-modules ofM such that, for all i P t0, . . . , s´1u,Mi`1{Mi –

DP{DPLi. But,
DP{DPLi – DP{DP

rLi
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with

rLi “ z
νi
p´1Liz

´
νi
p´1 “ pφp ´ ci,riqh

´1
i,ri
¨ ¨ ¨ pφp ´ ci,1qh

´1
i,1 “

ri
ÿ

j“0

bjφ
j
p

for some bj P P of non-negative z-adic valuation and such that b0p0qbrip0q ‰
0. It follows from [Roq18, Proposition 34] that the (system associated to
the) module DP{DPLi – DP{DP

rLi is regular singular at 0 in the sense
of [Roq18, Definition 33] and, hence, is isomorphic to MAi for some Ai P
GLripQq. This concludes the proof of Proposition 32.

4.4. Second step of the proof of Theorem 27: elimination of the
part of positive valuation. Consider s P Zě1 and r “ pr1, . . . , rsq P Zsě1
such that r1 ` ¨ ¨ ¨ ` rs “ d.

We let Hr be the group of matrices of the form

(29) F “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ir1
. . .

Iri Fi,j

0
. . .

Irj
. . .

Irs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P GLdpPq

where Fi,j P Mri,rj pPq.
We let Pą0 be the subring of P made of the Puiseux series with support

in Qą0. We let Pď0 be the subring of P made of the Puiseux series with
support in Qď0 ; thus,

Pď0 “
ď

γPQą0

Qrz´γs.

The second step of the proof of Theorem 27 is the following result.

Proposition 34. Consider a block upper triangular matrix A P GLdpPq of
the form

(30) A “

¨

˚

˝

A1 ˚

. . .
0 As

˛

‹

‚

for some pA1, . . . , Asq P GLr1pQqˆ ¨ ¨ ¨ˆGLrspQq. There exists F P Hr such
that the coefficients of

(31) F rAs “

¨

˚

˝

A1 ‹

. . .
0 As

˛

‹

‚

belong to Pď0.
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The proof is given below, after the following preliminary result.

Lemma 35. Consider A1, A2 P GLdpQq and B P MdpP
ą0q. There exists

F P MdpP
ą0q such that

(32) F pzpqA1 ´A2F pzq “ Bpzq.

Proof. We consider

F “ ´
ÿ

kě0

A´k´12 Bpzp
k
qAk1 P MdpP

ą0q.

A straightforward calculation shows that F satisfies (32). �

In the following proof, for any F “
ř

γPQ Fγz
γ P MdpH q, we set

(33) F 0 “ F0, Fă0 “
ÿ

γPQă0

Fγz
γ , Fą0 “

ÿ

γPQą0

Fγz
γ ,

so that
F “ Fă0 ` F 0 ` Fą0.

Proof of Proposition 34. For any pi, jq P t1, . . . , su2 with j ą i and any M P

Mri,rj pPq, we consider the matrix

Ti,jpMq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ir1 0 0. . .
Iri M

0
. . . 0

Irj
. . .

Irs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P Hr.

We have
Ti,jpMq

´1 “ Ti,jp´Mq.

We let E be the set of block upper triangular matrices B P GLdpPq whose
diagonal blocks are A1, . . . , As, that is, matrices of the form

(34) B “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

A1

. . .
Ai Bi,j

0
. . .

Aj
. . .

As

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P GLdpPq.



A PURITY THEOREM FOR MAHLER EQUATIONS 29

Note that A P E. For any B P E, the matrix Ti,jpMqrBs belongs to E and its
pk, lqth block is equal to

(35)

$

’

’

&

’

’

%

´AiMpzq `Bi,j `Mpz
pqAj if pk, lq “ pi, jq,

Bi,l `Mpz
pqBj,l if k “ i and l ą j,

´Bk,iMpzq `Bk,j if k ă i and l “ j,
Bk,l else,

i.e., zooming at the upper right corner of the matrix Ti,jpMqrBs we obtain

¨ ¨ ¨
˚

jth column
hkkkkkkkkkkkkkikkkkkkkkkkkkkj

´B1,iMpzq ` B1,j
˚ ˚

...
¨ ¨ ¨

˚
´Bi´1,iMpzq ` Bi´1,j

˚ ˚

ith row Ñ ´AiMpzq ` Bi,j `Mpzp
qAj Bi,j`1 `Mpzp

qBj,j`1 ¨ ¨ ¨ Bi,s `Mpzp
qBj,s

¨ ¨ ¨ ˚ ˚ ˚ ˚

...
...

...
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

where the ˚-blocks are equal to the corresponding blocks of B.
We equip the set S :“ tpk, lq P t1, . . . , su2 | k ă lu with the following total

order: pk, lq ă pk1, l1q if either (l “ l1 and k1 ă k) or (l ă l1). With respect
to this order we have

p1, 2q ă p2, 3q ă p1, 3q ă p3, 4q ă p2, 4q ă p1, 4q ă p4, 5q ă p3, 5q ă ¨ ¨ ¨

Then, we shall construct, for all pk, lq P S, a matrix Brk,ls P E satisfying the
following property:

(1) the systems φpY “ AY and φpY “ Brk,lsY are P-equivalent via a
gauge transformation in Hr;

(2) for all pi, jq P S with pi, jq ă pk, lq or pi, jq “ pk, lq, the pi, jq-block
pBrk,lsqi,j of Brk,ls has coefficients in Pď0.

Our construction is recursive with respect to ă and proceeds as follows.

Construction of Br1,2s. According to Lemma 35, there exists M r1,2s P

Mr1,r2pP
ą0q such that M r1,2spzpqA2´A1M

r1,2s “ ´Aą01,2. Then, using (35),
we see that the matrix

Br1,2s “ T1,2pM
r1,2sqrAs

belongs to E and that

pBr1,2sq1,2 “ ´A1M
r1,2s `A1,2 `M

r1,2spzpqA2 “ Aď01,2

has coefficients in Pď0.

Construction of Br2,3s from Br1,2s. According to Lemma 35, there exists
M r2,3s P Mr2,r3pP

ą0q such that M r2,3spzpqA3 ´ A2M
r2,3s “ ´pBr1,2sqą02,3.

Then, using (35), we see that the matrix

Br2,3s “ T2,3pM
r2,3sqrBr1,2ss
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belongs to E and that the matrices

pBr2,3sq1,2 “ pBr1,2sq1,2,

pBr2,3sq2,3 “ ´A2M
r2,3spzq ` pBr1,2sq2,3 `M

r2,3spzpqA3 “ pB
r1,2sq

ď0
2,3

have coefficients in Pď0.

Construction of Br1,3s from Br2,3s. According to Lemma 35, there exists
M r1,3s P Mr1,r3pP

ą0q such that M r1,3spzpqA3 ´ A1M
r1,3s “ ´pBr2,3sqą01,3.

Then, using (35), we see that the matrix

Br1,3s “ T1,3pM
r1,3sqrBr2,3ss

belongs to E and that the matrices

pBr1,3sq1,2 “ pBr2,3sq1,2,

pBr1,3sq2,3 “ pBr2,3sq2,3,

pBr1,3sq1,3 “ ´A1M
r1,3s ` pBr2,3sq1,3 `M

r1,3spzpqA3 “ pB
r2,3sq

ď0
1,3

have coefficients in Pď0.

We construct the other matrices Br3,4s, Br2,4s, Br1,4s, Br4,5s, Br3,5s, . . .,
Brs´1,ss (in this order) is a similar way. It is clear that these matrices satisfy
conditions (1) and (2) above.

In particular, the systems φpY “ AY and φpY “ Brs´1,ssY are P-
equivalent via a gauge transformation in Hr and Brs´1,ss is of the form (31).
This concludes the proof.

�

4.5. Third step of the proof of Theorem 27: elimination of the part
of negative valuation. Consider s P Zě1 and r “ pr1, . . . , rsq P Zsě1 such
that r1 ` ¨ ¨ ¨ ` rs “ d. We recall that Vr denotes the group of matrices of
the form

(36) F “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ir1
. . .

Iri Fi,j

0
. . .

Irj
. . .

Irs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P GLdpH q

where Fi,j P Mri,rj pVj´iq. We continue with the notation (33).
The third step of the proof of Theorem 27 is the following result.
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Proposition 36. Consider a block upper triangular matrix

(37) A “

¨

˚

˝

A1 ˚

. . .
0 As

˛

‹

‚

P GLdpPq XMdpP
ď0q

where pA1, . . . , Asq P GLr1pQq ˆ ¨ ¨ ¨ ˆ GLrspQq. Then, there exists F P Vr
such that F rAs “ A0.

We recall that A0 denotes the constant coefficient of A seen as a Puiseux
series with coefficients in MdpQq. The proof of Proposition 36 is given below,
after a preliminary result.

Lemma 37. Consider A1, A2 P GLdpQq and B P MdpVsq. There exists
F pzq P MdpVs`1q such that

(38) F pzpqA1 ´A2F pzq “ Bpzq.

Proof. By linearity, it is sufficient to treat the case

Bpzq “ hpzqR

with R P MdpQq and h P Vs. Since h P Vs Ă H ă0, it follows from Lemma 16

that the family phpz
1

pk qAk´12 RA´k1 qkě1 is summable. So, we can consider

F pzq “
ÿ

kě1

hpz
1

pk qAk´12 RA´k1 P MdpH q.

We claim that this F has the desired properties. Indeed, the following
calculation shows that F satisfies (38):

F pzpqA1 ´A2F pzq

“
ÿ

kě1

hpz
1

pk´1 qAk´12 RA´k1 A1 ´A2

ÿ

kě1

hpz
1

pk qAk´12 RA´k1

“
ÿ

kě1

hpz
1

pk´1 qAk´12 RA
´pk´1q
1 ´

ÿ

kě1

hpz
1

pk qAk2RA
´k
1

“ hpz
1

p1´1 qA1´1
2 RA

´p1´1q
1

“ Bpzq.

It remains to prove that the coefficients of F belong to Vs`1. We let A´11 “

D1 ` N1 and A2 “ D2 ` N2 be the Dunford-Jordan decomposition of A´11
and A2 respectively (i.e., for all i P t1, 2u, Di is semisimple, Ni is nilpotent
and DiNi “ NiDi). Using the Newton binomial formula

A´k1 “

k
ÿ

l“0

ˆ

k

l

˙

Dk´l
1 N l

1 “

d´1
ÿ

l“0

ˆ

k

l

˙

N l
1D

k´l
1

and

Ak2 “
k
ÿ

l“0

ˆ

k

l

˙

Dk´l
2 N l

2 “

d´1
ÿ

l“0

ˆ

k

l

˙

Dk´l
2 N l

2
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(where
`

k
l

˘

“ 0 if l ą k), we see that F is a Q-linear combinaison of terms
of the form

(39)
ÿ

kě1

kαhpz
1

pk qDk´1
2 SDk

1

with S P MdpQq and α P Zě0. In order to conclude the proof, it remains
to prove that the entries of (39) are in Vs`1. Since the latter property is
invariant by right and left multiplication by an element of GLdpQq, we can
assume that the Di are diagonal, say Di “ diagpci,1, . . . , ci,dq. In that case,
setting S “ psi,jq1ďi,jďn, we have

(39) “

˜

si,j
ÿ

kě1

kαck´12,i c
k
1,jhpz

1

pk q

¸

1ďi,jďd

.

It follows from Lemma 19 that the entries of the latter matrix are in Vs`1 as
expected. �

Proof of Proposition 36. We set

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

A1

. . .
Ai Ai,j

0
. . .

Aj
. . .

As

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P GLdpPq

where Ai,j P Mri,rj pP
ď0q.

We want to prove that there exists F P Vr such that F rAs “ A0, i.e.,
such that F pzpqApzq “ A0F pzq. Note that, for any

(40) F “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ir1
. . .

Iri Fi,j

0
. . .

Irj
. . .

Irs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P Vr,

the equation F rAs “ A0 is equivalent to: for all pi, jq P t1, . . . , su2 with
j ě i,

j
ÿ

k“i

Fi,kpz
pqAk,jpzq “

j
ÿ

k“i

A0
i,kFk,jpzq.



A PURITY THEOREM FOR MAHLER EQUATIONS 33

This can be rewritten as follows: for all pi, jq P t1, . . . , su2 with j ě i,

(41) Fi,jpz
pqAj ´AiFi,jpzq “

j
ÿ

k“i`1

A0
i,kFk,jpzq ´

j´1
ÿ

k“i

Fi,kpz
pqAk,jpzq

“ pA0
i,j ´Ai,jpzqq `

j´1
ÿ

k“i`1

A0
i,kFk,jpzq ´

j´1
ÿ

k“i`1

Fi,kpz
pqAk,jpzq

(where the sums
řj´1
k“i`1 are 0 if j ´ 1 ă i ` 1). We shall now prove the

existence of such Fi,j P Mri,rj pVj´iq by induction on δ “ j´i P t0, . . . , s´1u.

Base case δ “ 0. The case δ “ 0 corresponds to i “ j and, in this case, we
can set Fi,jpzq “ Fi,ipzq “ Iri .

Inductive step δ Ñ δ ` 1. Consider δ P t0, . . . , s´ 2u and assume that we
can find Fi,jpzq P Mri,rj pVj´iq for all i, j P t1, . . . , su with j ě i such that
j ´ i ď δ. Then, for any i, j P t1, . . . , su with j ě i such that j ´ i “ δ ` 1,
the terms involved in the right hand side of (41) are known and this right
hand side has coeffcients in Vδ. Now, Lemma 37 ensures that, for any i, j P
t1, . . . , su with j ě i such that j´i “ δ`1, we can find Fi,jpzq P Mri,rj pVδ`1q

satisfying (41). This concludes the induction. �

4.6. Conclusion of the proof of Theorem 27. Proposition 30 guaranties
that there exist s P Zě1, r “ pr1, . . . , rsq P Zsě1 such that r1 ` ¨ ¨ ¨ ` rs “ d,
pA1, . . . , Asq P GLr1pQq ˆ ¨ ¨ ¨ ˆGLrspQq and G P GLdpPq such that

(42) GrAs “

¨

˚

˝

A1 ˚

. . .
0 As

˛

‹

‚

.

Proposition 34 ensures that there exists H P Hr such that the coefficients of

HrGrAss “

¨

˚

˝

A1 ˚

. . .
0 Ai

˛

‹

‚

belong to Pď0 “
Ť

γPQą0
Qrz´γs. Proposition 36 guaranties that there exists

K P Vr such that
KrHrGrAsss “ C

where C P GLdpQq is the coefficient of z0 in HrGrAss.
Then, F1 “ pHGq

´1, F2 “ K´1, Θ “ HrGrAss and the matrix C defined
above have the properties required by Theorem 27.

4.7. Proof of Theorem 29. We let F1, F2, C,Θ be the matrices given by
Theorem 27 and we set F “ F1F2, so that FeC is a fundamental matrix of
solutions of (21) and that

F2pz
pqC “ ΘpzqF2pzq.
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Consider another fundamental matrix of solutions of (21) of the form F 1eC1

with F 1 P GLdpH q and C 1 P GLdpQq. Combining the facts that FeC (resp.
F 1eC1) is solution of (21) and the equality φppeCq “ CeC , we get F pzpqC “
ApzqF pzq (resp. F 1pzpqC 1 “ ApzqF 1pzq). Setting R “ F´1F 1 P GLdpH q,
we get RpzpqC 1 “ CRpzq. Setting R “

ř

γPQ rγz
γ , we obtain, for all γ P Q,

r γ
p
C 1 “ Crγ . This implies that the support supppRq of R is left invariant

by multiplication by pZ. Since supppRq is well-ordered, this implies that
supppRq Ă t0u, i.e., R P GLdpQq. Thus, F 1 “ FR and C 1 “ R´1CR. Now
set F 12 “ F´11 F 1. Then, F 1 “ F1F

1
2, F 12 “ F2R and

F 12pz
pqC 1 “ F2pz

pqRC 1 “ F2pz
pqCR “ ΘpzqF2pzqR “ ΘpzqF 12pzq .

Thus, the matrix R has the desired properties.

4.8. Proof of Theorem 4. Theorem 4 states that the p-Mahler equation
(1) has a full basis of generalized p-Mahler series solutions, i.e., it has d
Q-linearly independent generalized p-Mahler series solutions y1, . . . , yd P R.
To prove this, we consider the p-Mahler system associated to equation (1),
namely

(43) Y pzpq “ ApzqY pzq

where

(44) A “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 1
´a0
ad

´a1
ad

´
ad´1

ad

˛

‹

‹

‹

‹

‹

‹

‚

.

It follows from Theorem 27 that this system has a fundamental matrix of
solutions of the form

F “ F1F2eC

where
‚ F1 P GLdpPq satisfies φppF1qΘ “ AF1, for some matrix Θ P GLdpK8q;
‚ the entries of F2 P GLdpH q belong to V;
‚ the entries of eC are Q-linear combinaisons of elements of the form
ec`

j with c P SppCq and j P t0, . . . , d´ 1u (see Lemma 24).
Note that the identity φppF1q “ AF1Θ

´1 implies that the finite dimensional
K8-vector space spanned by the entries of F1 is invariant under φp; this
implies that the entries of F1 are p-Mahler Puiseux series.

Now, the entries y1, . . . , yd of the first row of F are Q-linearly independent
solutions of (1) and it follows from the properties of the entries of F1, F2 and
eC listed above that they have the form

yi “
ÿ

cPSppCq,jPt0,...,d´1u

fc,jec`
j
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where the fc,j are finite sums of products of a p-Mahler Puiseux series by an
element of V. Since any element of V is a linear combination over Qrz´

1
˚ s

of some ξα,λ,a, the fc,j are finite sums of products of a p-Mahler Puiseux
series with a Hahn series of the form ξα,λ,a. Hence, the yi are generalized
p-Mahler series. This concludes the proof.

5. Standard decomposition: proofs of Propositions 6 and 10

Recall that, according to Definition 5, the decomposition (3)-(4) of a gen-
eralized p-Mahler series f is standard if the triples pα,λ,aq involved in the
support of the sum in (4) belong to the set

Λst “
ď

tPZě0

Ztě0 ˆ pQ
ˆ
qt ˆ Ntppq

where Nppq is the set of positive rational numbers whose denominator is
coprime with p and whose numerator is not divisible by p.

5.1. Proof of Proposition 6. Proposition 6 states that any generalized
p-Mahler series has a unique standard decomposition. The uniqueness is
proved in Section 5.1.1, the existence is proved in Section 5.1.2.

5.1.1. Uniqueness. The uniqueness of the standard decomposition in Propo-
sition 6 is clearly implied by the following result.

Proposition 38. The family

pξα,λ,aec`
jq
pα,λ,aqPΛst,pc,jqPQ

ˆ
ˆZě0

is P-linearly independent.

Proof. We first note that [Roq24, Lemma 30] guaranties that the family
pec`

jq
pc,jqPQˆˆZě0

is H -linearly independent. Therefore, in order to conclude
the proof, it is sufficient to prove that the family

pξα,λ,aqpα,λ,aqPΛst

is P-linearly independent. This is ensured by Proposition 39 below. �

Proposition 39. The family

pξα,λ,aqpα,λ,aqPΛst

is P-linearly independent.

This result is proved below after the following lemma.

Lemma 40. Consider s, t P Zě0 such that s ě t ě 0, a “ pa1, . . . , asq P
Ns
ppq,b “ pb1, . . . , btq P N

t
ppq, d P Zě1. Then, there exists Ca,b,d ą 0 such that,

for all γ P 1
dZ, for all k1, . . . , ks, `1, . . . , `t P Zě1 such that k1, . . . , ks ě Ca,b,d,

we have

(45)
a1
pk1
`

a2
pk1`k2

`¨ ¨ ¨`
as

pk1`k2`¨¨¨`ks
“ γ`

b1
p`1
`

b2
p`1``2

`¨ ¨ ¨`
bt

p`1``2`¨¨¨``t

if and only if γ “ 0, s “ t and, for all i P t1, . . . , tu, ai “ bi and ki “ `i.



36 C. FAVERJON AND J. ROQUES

Proof. We first consider the case t “ 0.

Case t “ 0. We have to prove that, for any s P Zě0, a “ pa1, . . . , asq P
Ns
ppq and d P Zě1, there exists Ca,d ą 0 such that, for all γ P 1

dZ, for all
k1, . . . , ks P Zě0 such that k1, . . . , ks ě Ca,d, the equality

(46)
a1
pk1

`
a2

pk1`k2
` ¨ ¨ ¨ `

as
pk1`k2`¨¨¨`ks

“ γ

implies s “ 0 and γ “ 0. We claim that any Ca,d P Zě1 such that
a1 ` ¨ ¨ ¨ ` as

pCa,d
ă

1

d

works. Indeed, the latter inequality implies that the left-hand side of (46)
belongs to r0, 1d r. Since the right-hand side of (46) belongs to 1

dZ, we get
that both sides or (46) are equal to 0, so s “ 0 and γ “ 0.

Let us now turn to the proof of the result in the general case. We argue
by induction on n “ s` t.

The result is already proved when n “ 0 or n “ 1 for, in that case, we
have t “ 0.

Consider an integer n ě 2. We assume that the result is true for all
s ě t ě 0 such that s ` t ď n ´ 1. Consider s ě t ě 0 such that s ` t “ n
and let us prove that the result is true for these s, t.

We already know that the result is true if t “ 0, so we can and will assume
that t ě 1. We distinguish two cases: as “ bt and as ‰ bt.

Case as “ bt. LetD P Zě1 be such that p is coprime with the denominator of
pD 1

d . Consider a1 “ pa1, . . . , as´1q, b1 “ pb1, . . . , bt´1q and the corresponding
constant Ca1,b1,d given by the induction hypothesis. We set Ca,b,d “ maxtD`
1, Ca1,b1,du.

Consider γ P 1
dZ and k1, . . . , ks, `1, . . . , `t P Zě1 such that k1, . . . , ks ě

Ca,b,d satisfying (45). We rewrite the equality (45) as follows

(47)
a1
pk1
`

a2
pk1`k2

`¨ ¨ ¨`
as

pk1`k2`¨¨¨`ks
´γ “

b1
p`1
`

b2
p`1``2

`¨ ¨ ¨`
bt

p`1``2`¨¨¨``t

The left-hand side of (47) belongs to 1
pk1`k2`¨¨¨`ks

Nppq whereas its right-hand
side belongs to 1

p`1``2`¨¨¨``t
Nppq. So, we have

(48) k1 ` k2 ` ¨ ¨ ¨ ` ks “ `1 ` `2 ` ¨ ¨ ¨ ` `t.

Thus, as
pk1`k2`¨¨¨`ks

“ bt
p`1``2`¨¨¨``t

and (45) gives

a1
pk1

`
a2

pk1`k2
`¨ ¨ ¨`

as´1
pk1`k2`¨¨¨`ks´1

“ γ`
b1
p`1
`

b2
p`1``2

`¨ ¨ ¨`
bt´1

p`1``2`¨¨¨``t´1
.

Since k1, . . . , ks´1 ě Ca1,b1,d, we have γ “ 0, s´1 “ t´1, ai “ bi and ki “ `i
for all i P t1, . . . , t´ 1u. It follows from (48) that ks “ `s as well. Moreover,
we have as “ bs by hypothesis. This concludes the induction step in this
case.
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Case as ‰ bt. We first treat the case t “ 1. Let L P Zě0 be such that pL is
the greatest power of p dividing the numerator of as ´ b1. Let D P Zě1 be
such that the numerators of pD 1

d , p
Da1, . . . , p

Das´1 is divisible by pL. We
set Ca,b,d “ D ` 1.

We claim that there is no γ P 1
dZ and k1, . . . , ks, `1 P Zě0 such that

k1, . . . , ks ě Ca,b,d satisfying (45). We argue by contradiction: we assume
that such k1, . . . , ks, `1 exist. Arguing as in the case as “ bt treated above,
we see that

k1 ` k2 ` ¨ ¨ ¨ ` ks “ `1.

Multiplying both sides of (45) by pk1`¨¨¨`ks “ p`1 , we obtain

(49) pk2`¨¨¨`ksa1 ` ¨ ¨ ¨ ` p
ksas´1 ` as “ pk1`¨¨¨`ksγ ` b1.

This can be rewritten as follows

(50) 0 “ pas ´ b1q ` p
k2`¨¨¨`ksa1 ` ¨ ¨ ¨ ` p

ksas´1 ´ p
k1`¨¨¨`ksγ.

But, by our choice of Ca,b,d, pL`1 divides the numerator of pk2`¨¨¨`ksa1 `
¨ ¨ ¨ ` pksas´1 ´ pk1`¨¨¨`ksγ but not the numerator of as ´ b1. This is in
contradiction with (50).

We now treat the case t ě 2. Let L P Zě0 be such that pL is the greatest
power of p dividing the numerator of as ´ bt. Let D P Zě1 be such that
the numerators of pD 1

d , p
Da1, . . . , p

Das´1 is divisible by pL. For any ` P

t0, . . . , Lu, consider a “ pa1, . . . , asq, b` “ pb1, . . . , bt´2, p
`bt´1 ` btq and the

corresponding constant Ca,b`,d given by the induction hypothesis. We set
Ca,b,d “ maxtD ` 1, Ca,b0,d, . . . , Ca,bL,du.

We claim that there is no γ P 1
dZ and k1, . . . , ks, `1, . . . , `t P Zě0 such that

k1, . . . , ks ě Ca,b,d satisfying (45). We argue by contradiction: we assume
that such k1, . . . , ks, `1, . . . , `t exist. Arguing as in the case as “ bt treated
above, we see that

k1 ` k2 ` ¨ ¨ ¨ ` ks “ `1 ` `2 ` ¨ ¨ ¨ ` `t.

Multiplying both sides of (45) by pk1`¨¨¨`ks “ p`1`¨¨¨``t , we obtain
(51)
pk2`¨¨¨`ksa1`¨ ¨ ¨`p

ksas´1`as “ pk1`¨¨¨`ksγ`p`2`¨¨¨``tb1`¨ ¨ ¨`p
`tbt´1`bt.

This can be rewritten as follows
(52)
p`2`¨¨¨``tb1`¨ ¨ ¨`p

`tbt´1 “ pas´btq`p
k2`¨¨¨`ksa1`¨ ¨ ¨`p

ksas´1´p
k1`¨¨¨`ksγ.

Since pL`1 divides the numerator of pk2`¨¨¨`ksa1`¨ ¨ ¨`pksas´1´pk1`¨¨¨`ksγ
but not the numerator of as´ bt, we get that `t P t0, . . . , Lu. Rewriting (45)
as follows
a1
pk1

` ¨ ¨ ¨ `
as

pk1`k2`¨¨¨`ks
“ γ `

b1
p`1

` ¨ ¨ ¨ `
bt´2

p`1``2`¨¨¨``t´2
`
p`tbt´1 ` bt
p`1``2`¨¨¨``t

and using the fact that k1, . . . , ks ě Ca,b`t ,d
, we get that s “ t´ 1, which is

absurd because t ď s. �
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Proof of Proposition 39. We want to prove that the family pξα,λ,aqpα,λ,aqPΛst

is P-linearly independent. Assume, on the contrary, that it is P-linearly
dependent. Then, there exist r P Zě1, pairwise distinct triples pαi,λi,aiq P
Λst, 1 ď i ď r, and Puiseux series f1, . . . , fr P Pˆ such that

(53)
r
ÿ

i“1

fiξαi,λi,ai “ 0.

For any i P t1, . . . , ru, we write ai “ pai,1, . . . , ai,tiq, αi “ pαi,1, . . . , αi,tiq,
λi “ pλi,1, . . . , λi,tiq. Up to renumbering, we might suppose that t1 ď t2 ď
¨ ¨ ¨ ď tr.

If tr “ 0, then r “ 1 and pα1,λ1,a1q “ ppq, pq, pqq. So, (53) reduces to
f1ξpq,pq,pq “ f1 “ 0, whence a contradiction.

We now assume that tr ě 1. Up to multiplying (53) by some power
of z, we might suppose that the z-adic valuation of fr is 0. Let d P Zě1
be such that the supports of f1, . . . , fr are included in 1

dZ. We consider
the constants Car,a1,d, . . . , Car,ar,d given by Lemma 40 and we set C “

maxtCar,a1,d, . . . , Car,ar,du. So, for any γ P
1
dZ, for any i P t1, . . . , r´ 1u, for

any k1, . . . , ktr , `1, . . . , `ti P Zě1 such that k1, . . . , ktr ě C, the equality
ar,1
pk1

` ¨ ¨ ¨ `
ar,tr

pk1`¨¨¨`ktr
“ γ `

ai,1
p`1

` ¨ ¨ ¨ `
ai,ti

p`1`¨¨¨``ti

holds if and only if γ “ 0, tr “ ti, ar “ ai and pk1, . . . , ktrq “ p`1, . . . , `trq.
This implies that, for any k1, . . . , ktr P ZěC , the coefficient of

(54) z
´
ar,1

pk1
´¨¨¨´

ar,tr

p
k1`¨¨¨`ktr

in fiξαi,λi,ai is equal to:

‚ cik
αi,1
1 ¨ ¨ ¨ k

αi,tr
tr λk1i,1 ¨ ¨ ¨λ

k1`¨¨¨`ktr
i,tr

if ai “ ar where ci ‰ 0 is the con-
stant coefficient of fi;

‚ 0 if ai ‰ ar.
The equality (53) guaranties that the sum of the coefficients of (54) in

f1ξα1,λ1,a1 , . . . , frξαr,λr,ar is equal to 0, so, for any k1, . . . , kt P ZěC , we
have

(55)
ÿ

iPI

cik
αi,1
1 ¨ ¨ ¨ k

αi,t
t λk1i,1 ¨ ¨ ¨λ

k1`¨¨¨`kt
i,t “ 0

where I be the set of i P t1, . . . , ru such that ai “ ar and where t “ tr is
the common value of the ti for i P I. But, since the 2t-uplets pαi,λiq are
pairwise distinct when i varies in I , it follows from [Sch03, Lem. 2.2] that
the family

´

pk
αi,1
1 ¨ ¨ ¨ k

αi,t
t λk1i,1 ¨ ¨ ¨λ

k1`¨¨¨`kt
i,t qpk1,...,ktqPZt

¯

iPI

is Q-linearly independent. Actually, a straightforward adaptation of the
proof of [Sch03, Lem. 2.2] implies that the family

´

pk
αi,1
1 ¨ ¨ ¨ k

αi,t
t λk1i,1 ¨ ¨ ¨λ

k1`¨¨¨`kt
i,t qpk1,...,ktqPZtěC

¯

iPI
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is Q-linearly independent (see also [FR24b]). This contradicts (55).
�

5.1.2. Existence. In order to prove the existence of the standard decomposi-
tion stated in Proposition 6, it is clearly sufficient to prove that any z´γξα,λ,a
is a Q-linear combinaison of terms of the form z´γ

1

ξα1,λ1,a1 where a1 has en-
tries in Nppq. The latter property is true and follows immediately from the
following lemma.

Lemma 41. For any s P Zě0, the Q-vector space Vs defined in Section 2.2
admits the following alternative description:

(56) Vs “ SpanQ

´

tz´γξpq,pq,pq | γ P Qą0u

Y
ď

tPt1,...,su

tz´γξα,λ,a | γ P Qě0, pα,λ,aq P Ztě0 ˆ pQ
ˆ
qt ˆ Ntppqu

¯

.

Proof. Let Ws be the Q-vector space given by the right-hand side of (56).
We want to prove that Vs “Ws. The inclusion Ws Ă Vs is obvious. In order
to prove the converse inclusion Vs ĂWs, we argue by induction on s.

Base case s “ 0. The inclusion Vs Ă Ws for s “ 0 is true because V0 “

W0 “ Pă0.

Inductive step s ´ 1 Ñ s. Suppose that Vs´1 Ă Ws´1 for some s P Zě1
and let us prove that Vs Ă Ws. We consider the nondecreasing filtration
pVs,βqβPZě´1 of Vs given by the Q-vector spaces defined by

Vs,´1 “ Vs´1

and, for all β P Zě0,

Vs,β “ Vs´1 ` SpanQ

´

 

z´γξα,λ,a | γ P Qě0,

pα,λ,aq P pt0, . . . , βu ˆ Zs´1ě0 q ˆ pQ
ˆ
qs ˆQs

ą0

(

¯

.

Proving Vs Ă Ws is equivalent to proving that, for all β P Zě´1, Vs,β Ă Ws.
Let us prove this by induction on β.

Base case β “ ´1. If β “ ´1, then Vs,β “ Vs,´1 “ Vs´1 and the inclusion
Vs,β ĂWs follows from the inductive hypothesis relative to s in this case.

Inductive step β ´ 1 Ñ β. Suppose that the inclusion Vs,β´1 ĂWs is true
for some β P Zě0 and let us prove that the inclusion Vs,β Ă Ws is true. It
is clearly sufficient to prove that any ξα,λ,a with pα,λ,aq P pt0, . . . , βu ˆ
Zs´1ě0 q ˆ pQ

ˆ
qs ˆQs

ą0 belongs to Ws. Consider such a triple pα,λ,aq.
Let us first note that, for all i P Zě0, we have

ξα,λ,pia ´ cξα,λ,pi`1a P Vs,β´1



40 C. FAVERJON AND J. ROQUES

with c “ pλ1 ¨ ¨ ¨λsq´1; this follows immediately from Lemma 21 after notic-
ing that ξα,λ,pi`1apzq “ ξα,λ,piapz

pq. This implies that, for all u P Zě1,

(57) ξα,λ,a ´ c
uξα,λ,pua “

u´1
ÿ

i“0

cipξα,λ,pia ´ cξα,λ,pi`1aq P Vs,β´1.

Since Vs,β´1 ĂWs´1 by induction, (57) shows that, in order to prove that
ξα,λ,a belongs to Ws, it is equivalent to prove that ξα,λ,pua belongs to Ws

for some u P Zě0. So, up to replacing ξα,λ,a by ξα,λ,pua for u P Zě0 large
enough, we can and will assume that the denominators of the entries of a
are relatively prime with p.

Now, for any e “ pe1, . . . , esq P Zsě0, we set ae “
´

a1
pe1 , . . . ,

as
pes

¯

. We
claim that

(58) ξα,λ,a P SpanQ tξα1,λ,ae | α
1 P Zsě0u ` Vs´1.

It is sufficient to prove this claim when e is of the form p0, . . . , 0, 1, 0, . . . , 0q:
the general case is obtained by applying these special cases iteratively. Let
us explain the proof of (58) in the case when s “ 2, the general case being
similar but requiring unpleasant notations. We split our study in different
cases.

Case e “ p1, 0q and α2 ‰ 0. We have

ξα,λ,a “
ÿ

k1,k2ě1

kα1
1 kα2

2 λk11 λ
k1`k2
2 z

´
a1

pk1
´

a2

pk1`k2

“
ÿ

k1ě0,k2ě1

pk1 ` 1qα1kα2
2 λk1`11 λk1`k2`12 z

´
a1{p

pk1
´

a2

pk1`k2`1

“
ÿ

k1ě0,k2ě2

λ1pk1 ` 1qα1pk2 ´ 1qα2λk11 λ
k1`k2
2 z

´
a1{p

pk1
´

a2

pk1`k2

“
ÿ

k1ě0,k2ě1

λ1pk1 ` 1qα1pk2 ´ 1qα2λk11 λ
k1`k2
2 z

´
a1{p

pk1
´

a2

pk1`k2

“
ÿ

k1ě0,k2ě1

λ1

α1
ÿ

j“0

α2
ÿ

j1“0

ˆ

α1

j

˙ˆ

α2

j1

˙

p´1qα2´j1kj1k
j1

2 λ
k1
1 λ

k1`k2
2 z

´
a1{p

pk1
´

a2

pk1`k2 .

Using the decomposition

ÿ

k1ě0,k2ě1

“
ÿ

k1ě1,k2ě1

`
ÿ

k1“0,k2ě1

,
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we get

ξα,λ,a “

α1
ÿ

j“0

α2
ÿ

j1“0

λ1

ˆ

α1

j

˙ˆ

α2

j1

˙

p´1qα2´j1ξpj,j1q,λ,ae

`

α2
ÿ

j1“0

λ1

ˆ

α2

j1

˙

p´1qα2´j1z
´
a1
p ξpj1q,pλ2q,pa2q.

This proves (58) in the case e “ p1, 0q and α2 ‰ 0.

Case e “ p1, 0q and α2 “ 0. We have

ξα,λ,a “
ÿ

k1,k2ě1

kα1
1 λk11 λ

k1`k2
2 z

´
a1

pk1
´

a2

pk1`k2

“
ÿ

k1ě0,k2ě1

pk1 ` 1qα1λk1`11 λk1`k2`12 z
´
a1{p

pk1
´

a2

pk1`k2`1

“
ÿ

k1ě0,k2ě2

λ1pk1 ` 1qα1λk11 λ
k1`k2
2 z

´
a1{p

pk1
´

a2

pk1`k2

“
ÿ

k1ě0,k2ě2

λ1

α1
ÿ

j“0

ˆ

α1

j

˙

kj1λ
k1
1 λ

k1`k2
2 z

´
a1{p

pk1
´

a2

pk1`k2 .

Using the decomposition
ÿ

k1ě0,k2ě2

“
ÿ

k1ě1,k2ě1

`
ÿ

k1“0,k2ě1

´
ÿ

k1ě1,k2“1

´
ÿ

k1“0,k2“1

,

we get

ξα,λ,a “

α1
ÿ

j“0

λ1

ˆ

α1

j

˙

ξpj,0q,λ,ae ` λ1z
´
a1
p ξp0q,pλ2q,pa2q

´

α1
ÿ

j“0

λ1λ2

ˆ

α1

j

˙

ξ
pjq,pλ1λ2q,p

a1`a2
p

q
´ λ1λ2z

´
a1`a2
p .

This proves (58) when e “ p1, 0q in the case α2 “ 0 as well.

Case e “ p0, 1q. We have

ξα,λ,a “
ÿ

k1,k2ě1

kα1
1 kα2

2 λk11 λ
k1`k2
2 z

´
a1

pk1
´

a2

pk1`k2

“
ÿ

k1ě1,k2ě0

kα1
1 pk2 ` 1qα2λk11 λ

k1`k2`1
2 z

´
a1

pk1
´

a2{p

pk1`k2

“

α2
ÿ

j“0

λ2

ˆ

α2

j

˙

ξpα1,jq,λ,ae ` λ2ξpα1q,pλ1q,pa1`a2{pq .

This proves (58) when e “ p0, 1q.
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Applying (58) with e “ pe1, . . . , esq where ei P Zě0 is such that pe is the
greatest power of p dividing the numerator of ai, so that ae P Nsppq, and using
the fact that Vs´1 ĂWs´1 by induction, we get

ξα,λ,a PWs ` Vs´1 ĂWs `Ws´1 ĂWs.

This concludes the inductive step and the demonstration. �

5.2. Proof of Proposition 10. Fix r P t1, 2, 3u. In order to prove Propo-
sition 10, we have to prove that if a generalized p-Mahler series f admits a
decomposition of the form (3)-(4) such that all the Puiseux series fc,j,α,λ,a
satisfy pOrq, then the Puiseux series involved in its standard decomposition
satisfy pOrq as well. In order to prove this, note that Lemma 41 implies that
the Puiseux series involved in the standard decomposition of f are Qrz´

1
˚ s-

linear combinations of the fc,j,α,λ,a. Since the set of p-Mahler Puiseux series
satisfying pOrq is a Qrz´

1
˚ s-module, we get that the Puiseux series involved

in the standard decomposition of f satisfy pOrq as well. This concludes the
proof.

6. Purity Theorem: proof of Theorem 11

Theorem 11 is proved in Section 6.5 below. The proof uses a result from
[ABS23] that we shall first remind.

6.1. Reminders on the p-Mahler denominator. Theorem 8 ensures that
any p-Mahler Laurent series f P Qppzqq satisfies the growth condition pO1q.
According to [ABS23], one can determine whether or not it satisfies one of
the stronger conditions pO2q or pO3q by looking at its p-Mahler denominator.
Let us briefly remind this.

Recall that we let φp denote the operator which maps any f P H to fpzpq.
So, for any f P H and i P Zě0, φippfq “ fpzp

i
q.

Definition 42. The p-Mahler denominator df of a p-Mahler Laurent series
f P Qppzqq is the monic generator of the ideal of Qrzs given by

(59)

#

P P Qrzs
ˇ

ˇ Pf P
d
ÿ

i“1

Qrzsφippfq for some d P Zě1

+

.

Remark 43. 1) In [ABS23], the previous definition is formulated for p-
Mahler series f P Qrrzss. Its extension to Qppzqq is straightforward.

2) The p-Mahler equations considered in [ABS23] have coefficients in Qpzq,
whereas the equations considered in the present paper have coefficients in
the bigger field K8. Note that f P Qppzqq satisfies a p-Mahler equation
with coefficients in Qpzq if and only if it satisfies a p-Mahler equation with
coefficients in K8. Indeed, assume that f P Qrrzss satisfies a p-Mahler
equation of the form (1) with a0, . . . , ad P Qpz

1
m q for some m P Zě1. Without
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loss of generality, we can assume that a0 “ 1. Let G be the Galois group of
the finite Galois extension Qppz

1
m qq of Qppzqq. Then, f satisfies

b0f ` b1φppfq ` ¨ ¨ ¨ ` bdφ
d
ppfq “ 0

with bi “
1
|G|

ř

σPG σpaiq P Qpzq and this equation is non trivial because
b0 “ 1.

In what follows, we denote by U the set of complex roots of unity and by
Up the set of roots of unity whose order is not coprime with p. We recall the
following result.

Theorem 44 ([ABS23, Theorems 6.1 & 7.1]). Consider a p-Mahler Laurent
series f P Qppzqq. We have the following:

‚ f satisfies pO2q if and only if every non-zero root of the p-Mahler
denominator of f belong to U;

‚ f satisfies pO3q if and only if every non-zero root of the p-Mahler
denominator of f belong to Up.

Remark 45. In [ABS23], the previous result is stated for any p-Mahler series
f P Qrrzss. Theorem 44 follows from [ABS23] by using the following remark.
Consider g “ zνf with ν P Zě0 large enough so that g P Qrrzss. Then,
f satisfies pO2q (resp. pO3q) if and only if g satisfies the same property.
Moreover, every non-zero root of the p-Mahler denominator of f belong to
Up (resp. U) if and only if the p-Mahler denominator of g satisfies the
same property. Now, Theorem 44 follows from [ABS23, Theorems 6.1 & 7.1]
applied to the p-Mahler series g.

6.2. p-Mahler denominator for generalized p-Mahler series. We ex-
tend the definition of p-Mahler denominator to generalized p-Mahler series
in the following obvious way.

Definition 46. The p-Mahler denominator df of a generalized p-Mahler
series f P R is the monic generator of the ideal of Qrzs given by

(60)

#

P P Qrzs
ˇ

ˇ Pf P
d
ÿ

i“1

Qrzsφippfq for some d P Zě1

+

if the latter ideal is non trivial; otherwise, we set df “ 0.

Remark 47. 1) Contrary to the case when f P Qppzqq considered in Section
6.1, the ideal (60) may be trivial and, hence, the p-Mahler denominator df

may be equal to 0. For instance, this is the case for fpzq “ z
1
p .

2) One can prove that, for any generalized p-Mahler series f having a
decomposition of the form (3)-(4) such that the fc,j,α,λ,a belong to Qppzqq,
the ideal (60) is non trivial. This can be proved using arguments used to prove
Proposition 51. As this will not be used in this paper, we do not include the
details.
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6.3. First step toward the proof of Theorem 11: denominator and
growth class of a basis of solutions. A first step toward the proof of
Theorem 11 is to prove that the zero locus of the coefficient a0 of a p-Mahler
equation provides informations on the class pP ´ Orq of its generalized p-
Mahler series solutions.

Proposition 48. Consider a p-Mahler equation

(61) adφ
d
ppyq ` ad´1φ

d´1
p pyq ` ¨ ¨ ¨ ` a0y “ 0

with a0, . . . , ad P Qrzs such that a0ad ‰ 0. This equation has d Q-linearly
independent generalized p-Mahler series solutions satisfying

‚ pP ´O1q in any case;
‚ pP ´O2q if the non-zero roots of a0 belong to U;
‚ pP ´O3q if the non-zero roots of a0 belong to Up.

Proposition 48 is proved below, after the following lemmas.

Lemma 49. Let f, g be generalized p-Mahler series such that

(62) eg “
n
ÿ

i“1

aiφ
i
ppgq ` f

for some e P Qrzszt0u and some a1, . . . , an P Qrzs. Then, the p-Mahler
denominator dg of g divides edf where df is the p-Mahler denominator of f .

Proof. If df “ 0, there is nothing to prove since any element of Qrzs divides
edf “ 0.

We now assume that df ‰ 0. We have

dff “
m
ÿ

j“1

bjφ
j
ppfq

for some b1, . . . , bm P Qrzs. It follows that

(63) edfg “
n
ÿ

i“1

dfaiφ
i
ppgq `

m
ÿ

j“1

bjφ
j
ppfq.

But, applying φjp to (62) with j P t1, . . . ,mu, we get

(64) φjppfq “ φjppeqφ
j
ppgq ´

n
ÿ

i“1

φjppaiqφ
i`j
p pgq.

Substituting the φjppfq in (63) with the right-hand side of (64) we obtain

edfg P
m`n
ÿ

i“1

Qrzsφippgq.

Thus, edf belongs to the ideal (60). Then, dg divides edf , whence the result.
�
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Lemma 50. Let f, g P Qppzqq be p-Mahler Laurent series such that

(65) eg “
n
ÿ

i“1

aiφ
i
ppgq ` f

for some e P Qrzszt0u and some a1, . . . , an P Qrzs. Then, g satisfies
‚ pO1q in any case;
‚ pO2q if f satisfies pO2q and if the non-zero roots of e belong to U;
‚ pO3q if f satisfies pO3q and if the non-zero roots of e belong to Up.

Proof. The first assertion follows immediately from Theorem 8. In order to
prove the last two assertions, we first remind that Lemma 49 ensures that the
p-Mahler denominator of g divides edf where df is the p-Mahler denominator
of f . Then, the result follows immediately from Theorem 44. �

Proof of Proposition 48. Let φppY q “ AY be the p-Mahler system associated
to the p-Mahler equation (61), where

(66) A “

¨

˚

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 1
´a0
ad

´a1
ad

´
ad´1

ad

˛

‹

‹

‹

‹

‹

‹

‚

.

The entries of the first line of any fundamental matrix of solutions of this
system constitute a full basis of solutions of (61). Thus, in order to prove
that (61) has d Q-linearly independent generalized p-Mahler series solutions
satisfying pOrq, it is sufficient to prove that φppY q “ AY has a fundamental
matrix of solutions whose entries are generalized p-Mahler series satisfying
pP´Orq. By Theorem 27 and Remark 28, the system (44) has a fundamental
matrix of solutions of the form

F1F2eC

where
‚ F1 P GLdpPq is such that

(67) φppF1qΘ “ AF1

for some upper triangular matrix Θ with diagonal coefficients in Qˆ

and with upper-diagonal coefficients in
Ť

γPQą0
Qrz´γs;

‚ F2 has entries in V;
‚ the entries of eC are Q-linear combinations of some ec`j .

In order to prove that φppY q “ AY has a fundamental matrix of solutions
whose entries are generalized p-Mahler series satisfying pOrq, it is sufficient
to prove that the entries of F1 satisfy pOrq. In order to conclude the proof,
it is thus sufficient to prove that any of the entries of F1 satisfy the following
property, that we denote by p˛q:
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‚ pO1q in any case;
‚ pO2q if the non-zero roots of a0 belong to U;
‚ pO3q if the non-zero roots of a0 belong to Up.

We will deduce this from equation (67). Note that Property p˛q is invariant
under sums, product by an element of Qrz´1s and under φp. We first notice
that, for any k P Zě1, the entries of F1 satisfy pOrq if and only if the entries
of F1pz

kq satisfy pOrq. Thus, up to replacing z by zk, F1pzq by F1pz
kq, Θpzq

by Θpzkq and Apzq by Apzkq in (67) for a suitable k P Zě1, we can and
will assume that F1 has coefficients in Qppzqq and that Θ has coefficients in
Qrz´1s (note that the fact that the non-zero roots of a0 belong to U (resp.
Up) implies that the non-zero roots of a0pzkq belong to U (resp. Up) as
well). Equation (67) can be rewritten as follows:

(68) a0F1Λ “ BφppF1q

where

Λ “ Θ´1 “

¨

˚

˝

λ1 ˚

. . .
0 λd

˛

‹

‚

has diagonal coefficients λ1, . . . , λd P Qˆ and upper-diagonal coefficients in
Qrz´1s and where

B “ A´1 “

¨

˚

˚

˚

˝

´a1 ¨ ¨ ¨ ¨ ¨ ¨ ´ad
a0 0 ¨ ¨ ¨ 0

. . . . . .
...

a0 0

˛

‹

‹

‹

‚

.

Setting F1 “ pfi,jq1ďi,jďd, we deduce from (68) that, for all i, j P t1, . . . , du,

a0

˜

j´1
ÿ

l“1

˚fi,l ` λjfi,j

¸

“

"

řd
k“1´akφppfk,jq if i “ 1,

a0φppfi´1,jq if i P t2, . . . , du

where the symbol ˚ stands for elements of Qrz´1s.
For j “ 1, this gives

a0λ1fi,1 “

"

řd
k“1´akφppfk,1q if i “ 1,

a0φppfi´1,1q if i P t2, . . . , du
.

This implies that, for i P t2, . . . , du, fi,1 “ λ
´pi´1q
1 φi´1p pf1,1q and, hence,

a0λ1f1,1 “
d
ÿ

k“1

´akλ
´pk´1q
1 φkppf1,1q.

Thus, the p-Mahler denominator of f1,1 divides a0 and it follows from The-
orem 44 that f1,1 satisfies p˛q. Therefore, for any i P t2, . . . , du, fi,1 “
λ
´pi´1q
1 φi´1p pf1,1q satisfies p˛q as well.
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For j “ 2,

a0 p˚fi,1 ` λ2fi,2q “

"

řd
k“0´akφppfk,2q if i “ 1,

a0φppfi´1,2q if i P t2, . . . , du

where the symbol ˚ stands for an element of Qrz´1s. This implies that, for
i P t2, . . . , du, fi,2 “ λ

´pi´1q
2 φi´1p pf1,2q ` ‹ and, hence

a0λ2f1,2 “
d
ÿ

k“1

´akλ
´pk´1q
2 φkppf1,2q ` ‹

where the symbol ‹ stands for p-Mahler elements of Qppzqq satisfying p˛q.
It follows from Lemma 50 that f1,2 satisfies p˛q. Therefore, for any i P

t2, . . . , du, fi,2 “ λ
´pi´1q
2 φi´1p pf1,2q ` ‹ satisfies p˛q as well.

Iterating this argument, we find that, for all i, j P t1, . . . , du, fi,j satisfies
p˛q. �

6.4. Second step toward the proof of Theorem 11: roots of the p-
Mahler denominator of generalized p-Mahler series. The next step
toward the proof of Theorem 11 is the following result.

Proposition 51. Let f be a generalized p-Mahler series of the form

f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛ

fc,j,α,λ,aξα,λ,aec`
j

where the fc,j,α,λ,a belong to Qppzqq. We assume that the vectors a involved
in the support of the sum have entries in Zą0. Then, the following hold:

‚ if f satisfies pP ´ O2q then the p-Mahler denominator of f has all
its non-zero roots in U;

‚ if f satisfies pP ´ O3q then the p-Mahler denominator of f has all
its non-zero roots in Up.

In particular, in both cases, the p-Mahler denominator of f is non-zero.

Proposition 51 is proved at the end of this subsection, after the following
lemma.

Lemma 52. Proposition 51 holds if f P H .

Proof. Let us first introduce some notations.
We let M be the set of p-Mahler Laurent series h P Qppzqq satisfying pO2q

(resp. pO3q). It is a Qrz, z´1s-module invariant by φp.
For any s P Zě0, we let Ws be the set of Hahn series of the form

ÿ

pα,λ,aqP
Ť

tPt0,...,su Ztě0ˆpQ
ˆ
qtˆZtą0

fα,λ,aξα,λ,a

where the sum has finite support and where the fα,λ,a belong M . In partic-
ular, W0 “M .
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For any s P Zě0, we consider the filtration pWs,βqβPZě0 of Ws defined as
follows: Ws,β is the set of Hahn series of the form

(69)
ÿ

αPt0,...,βuˆZs´1
ě0 ,λPpQ

ˆ
qs,aPZsą0

fα,λ,aξα,λ,a

`
ÿ

pα,λ,aqP
Ť

tPt0,...,s´1u Ztě0ˆpQ
ˆ
qtˆZtą0

fα,λ,aξα,λ,a

where the sums have finite support and where the fα,λ,a belong to M . In
particular, W0,β “W0 “M .

It will be convenient to set, for any s P Zě1, Ws,´1 “Ws´1.
Since M is a Qrz, z´1s-module, so are Ws and Ws,β . Moreover, Lemma 21

implies that the Qrz, z´1s-modules Ws and Ws,β are invariant by φp.
Since any Hahn series satisfying the assumptions of Proposition 51 belongs

to Ws for some s P Zě0, the statement of the present lemma can be restated
as follows: Proposition 51 holds for any element f of Ws, for any s P Zě0.
In order to prove this, we argue by induction on s.

Base case s “ 0. If s “ 0, then Ws “ W0 “ M and the result follows
immediately from Theorem 44.

Inductive step s´ 1 Ñ s. Suppose that the result is true for the elements
of Ws´1 for some s P Zě1 and let us prove that the result is true for the
elements of Ws. Since Ws “

Ť

βPZě´1
Ws,β , it is equivalent to prove that the

result is true for any element of Ws,β for any β P Zě´1. In order to prove
this, we argue by induction on β.

Base case β “ ´1. If β “ ´1, then Ws,β “ Ws,´1 “ Ws´1 and the result
follows from the inductive hypothesis relative to s.

Inductive step β´ 1 Ñ β. Suppose that the result is true for the elements
of Ws,β´1 for some β P Zě0 and let us prove that the result is true for the
elements of Ws,β . Any element f of Ws,β can be written as follows

(70) f “
ÿ

αPtβuˆZs´1
ě0 ,λPpQ

ˆ
qs,aPZsą0

fα,λ,aξα,λ,a mod Ws,β´1.

We will say that the ps, βq-length of such an f is at most l P Zě0 if the
number of terms in the above sum is at most l. We now argue by induction
on l.

Base case l “ 0. If l “ 0, then f belongs to Ws,β´1 and the result follows
by the inductive hypothesis relative to β.

Inductive step l´1 Ñ l. We assume that the result is true for any element
of Ws,β of ps, βq-length at most l ´ 1 and we will prove that it is true for
any element of Ws,β of ps, βq-length at most l. So, we consider an element f
of Ws,β of ps, βq-length at most l and we consider its decomposition (70). If
all the fα,λ,a involved in this decomposition are 0, then we are in the base
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case l “ 0 that has already been treated. So, we can assume that there is
an index pα0,λ0,a0q such that fα0,λ0,a0 ‰ 0. Since fα0,λ0,a0 satisfies pO2q

(resp. pO3q), it follows from Theorem 44 that the non-zero roots of the p-
Mahler denominator d“dfα0,λ0,a0

of fα0,λ0,a0 belong to U (resp. to Up). By
definition of the p-Mahler denominator, there exist a1, . . . , ad P Qrzs such
that

dfα0,λ0,a0 “

d
ÿ

j“1

ajφ
j
ppfα0,λ0,a0q .

We can write
f “ h0 ` fα0,λ0,a0ξα0,λ0,a0

with h0 PWs,β of ps, βq-length at most l ´ 1 and we have

df “ dh0 ` dfα0,λ0,a0ξα0,λ0,a0

“ dh0 `
d
ÿ

j“1

ajφ
j
ppfα0,λ0,a0qξα0,λ0,a0 .

But, it follows from Lemma 21 that

φjppfα0,λ0,a0qξα0,λ0,a0 “ cjφjppfα0,λ0,a0ξα0,λ0,a0q mod Ws,β´1.

where c P Qˆ is the inverse of the product of the coordinates of λ0. So, we
get the following equalities modulo Ws,β´1:

df ” dh0 `
d
ÿ

j“1

ajc
jφjppfα0,λ0,a0ξα0,λ0,a0q

” dh0 ´
d
ÿ

j“1

ajc
jφjpph0q `

d
ÿ

i“1

ajc
jφjppfq.

Hence, we have

h :“ df ´
d
ÿ

j“1

ajc
jφjppfq ” dh0 ´

d
ÿ

i“1

aic
iφjpph0q mod Ws,β´1

Using Lemma 21 again and (71), we see that h is – as h0 – an element
of Ws,β of ps, βq-length at most l ´ 1. By the induction hypothesis on the
ps, βq-length, the p-Mahler denominator dh of h has its non-zero roots in U

(resp. in Up). Then, using (71) and Lemma 49, we get that the p-Mahler
denominator df of f divides d ¨ dh and, hence, has its non-zero roots in U

(resp. in Up). This concludes the proof. �

Proof of Proposition 51. To any generalized p-Mahler series of the form

(71) f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqP
Ť

tPZě0
Ztě0ˆpQ

ˆ
qtˆZtą0

fc,j,α,λ,aξα,λ,aec`
j
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where the fc,j,α,λ,a P Qppzqq are p-Mahler Laurent series, we attach a number
Kpfq P Zě1 defined as follows. For any pc, jq P Qˆ ˆ Zě0, we set

(72) hc,j “
ÿ

pα,λ,aqP
Ť

tPZě0
Ztě0ˆpQ

ˆ
qtˆZtą0

fc,j,α,λ,aξα,λ,a P H ,

so that

(73) f “
ÿ

pc,jqPQˆˆZě0

hc,jec`
j .

We let Cpfq be the set of c P Qˆ such that hc,j ‰ 0 for some j P Zě0. For
each c P Cpfq, let Jpf, cq denote the maximal j P Zě0 such that hc,j ‰ 0.
We set Kpfq “

ř

cPCpfqp1` Jpf, cqq.
In order to prove that Proposition 51 holds true for any generalized p-

Mahler series f of the form (71) satisfying pP ´O2q (resp. pP ´O3q), it is
of course equivalent to prove that it is is true for any generalized p-Mahler
series f of the form (71) satisfying pP ´ O2q (resp. pP ´ O3q) such that
Kpfq ď k for some k P Zě1. Let us prove this by induction on k.

Base case k “ 1. In this case, f “ hc,0ec for some c P Qˆ and the result
follows immediately from Lemma 52 because hc,0ec and hc,0 have the same
p-Mahler denominator.

Inductive step k´ 1 Ñ k. Consider a nonzero generalized p-Mahler series
f of the form (71) satisfying pP´O2q (resp. pP´O3q) such that Kpfq ď k.
We use the notations (72) and (73). Choose an arbitrary c0 P Cpfq and set
j0 “ Jpf, c0q. We set

rf “
ÿ

pc,jqPQˆˆZě0,pc,jq‰pc0,j0q

hc,jec`
j ,

so that

f “ rf ` hc0,j0ec0`
j0 .

It follows from Lemma 52 that the p-Mahler denominator d “ dhc0,j0 of hc0,j0
has its nonzero roots in U (resp. Up). We have

dhc0,j0 “
d
ÿ

i“1

aiφ
i
pphc0,j0q

for some d P Zě1 and some a1, . . . , ad P Qrzs. Therefore, we have

df “ d rf ` dhc0,j0ec0`
j0 “ d rf `

d
ÿ

i“1

aiφ
i
pphc0,j0qec0`

j0 .
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But,
d
ÿ

i“1

aiφ
i
pphc0,j0qec0`

j0

“

d
ÿ

i“1

c´i0 aiφ
i
pphc0,j0ec0p`´ iq

j0q

“

d
ÿ

i“0

j0
ÿ

s“0

c´i0

ˆ

j0
s

˙

p´iqsaiφ
i
pphc0,j0ec0`

j0´sq

“

d
ÿ

i“1

c´i0 aiφ
i
pphc0,j0ec0`

j0q `

d
ÿ

i“1

j0
ÿ

s“1

c´i0

ˆ

j0
s

˙

p´iqsaiφ
i
pphc0,j0ec0`

j0´sq

“

d
ÿ

i“1

c´i0 aiφ
i
ppf ´

rfq `
d
ÿ

i“1

j0
ÿ

s“1

c´i0

ˆ

j0
s

˙

p´iqsaiφ
i
pphc0,j0ec0`

j0´sq

“

d
ÿ

i“1

aic
´i
0 φippfq ` rg

with

rg “ ´
d
ÿ

i“1

c´i0 aiφ
i
pp
rfq `

d
ÿ

i“1

j0
ÿ

s“1

c´i0

ˆ

j0
s

˙

p´iqsaiφ
i
pphc0,j0ec0`

j0´sq.

So,

(74) df “
d
ÿ

i“1

aic
´i
0 φippfq ` g

where g “ d rf ` rg. It is obvious that g satisfies pP ´O2q (resp. pP ´O3q)
and Kpgq ă Kpfq ď k, so Kpgq ď k ´ 1. By induction, Proposition 51
holds true for the generalized p-Mahler series g and it follows from (74) and
Lemma 49 that the same is true for f . �

6.5. Proof of Theorem 11. We prove Theorem 11 below, after a couple
of lemmas. For any ν P Zě1 relatively prime with p, for any k P Z, for any
element f of R of the form

f “
ÿ

pc,jqPQˆˆZě0

fc,jec`
j

with fc,j P H , we set

rνpks˚f “
ÿ

pc,jqPQˆˆZě0

fc,jpz
νpkqφkppecqφ

k
pp`q

j

“
ÿ

pc,jqPQˆˆZě0

fc,jpz
νpkqckecp`` kq

j .
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Lemma 53. If f is solution of the equation

a0pzqy ` a1pzqφppyq ` ¨ ¨ ¨ ` adpzqφ
d
ppyq “ 0

then rνpks˚f is solution of the equation

a0pz
νpkqy ` a1pz

νpkqφppyq ` ¨ ¨ ¨ ` adpz
νpkqφdppyq “ 0.

Proof. This result follows immediately from the following obvious facts: the
map rνpks˚ is additive and, for any h P H , we have

rνpks˚phfq “ hpzνp
k
qrνpks˚pfq.

�

Lemma 54. Consider a generalized p-Mahler series f , ν P Zě1 relatively
prime with p, k P Z and r P t1, 2, 3u. Then, f satisfies pP ´Orq if and only
if rνpks˚f satisfies pP ´Orq.

Proof. Let us first consider the case when f is a Puiseux series. In order to
prove the lemma in this case, it is clearly sufficient to prove that if f P P
satisfies pOrq and if c P Qą0, then gpzq “ fpzcq satisfies pOrq. Let us prove
this. Setting f “

ř

γPQ fγz
γ , we have g “

ř

γPQ gγz
γ with gγ “ fc´1γ . If

r “ 1, we have hpfγq “ OpHpγqq, so hpgγq “ OpHpc´1γqq. But, Hpc´1γq ď
Hpc´1qHpγq. So Hpc´1γq “ OpHpγqq and, hence, hpgγq “ OpHpγqq so that
g satisfies pO1q as wanted. The cases r P t2, 3u are similar.

We now come to the general case: we consider a generalized p-Mahler
series f , ν P Zě1 relatively prime with p, k P Z and r P t1, 2, 3u and we want
to prove that f satisfies pP ´Orq if and only if rνpks˚f satisfies pP ´Orq.
Let

f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛst

fc,j,α,λ,aξα,λ,aec`
j

be the standard decomposition of f .

Case k “ 0. Since ξα,λ,apzνq “ ξα,λ,νapzq, we have

(75) rνs˚f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛst

fc,j,α,λ,apz
νqξα,λ,νapzqec`

j .

This is the standard decomposition of rνs˚f because ν is relatively prime
with p and, hence, the νa involved in (75) have entries in Nppq. Then, the
following properties are equivalent:

(1) f satisfies pP ´Orq;
(2) @pc, jq P Qˆ ˆ Zě0,@pα,λ,aq P Λst, fc,j,α,λ,apzq satisfies pOrq;
(3) @pc, jq P Qˆ ˆ Zě0,@pα,λ,aq P Λst, fc,j,α,λ,apzνq satisfies pOrq;
(4) rνs˚f satisfies pP ´Orq.

The equivalences between (1) and (2) and between (3) and (4) follow directly
from the definition of pP ´ Orq and the equivalence between (2) and (3)
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follows from the Puiseux case considered at the very beginning of the proof.
This concludes the proof in the case k “ 0.

Case ν “ 1 and k “ 1. Assume first that f satisfies pP ´ Orq. Since
ξα,λ,apz

pq “ ξα,λ,papzq we have

rps˚f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛst

fc,j,α,λ,apz
pqξα,λ,apz

pqcecp`` 1qj(76)

“
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛ

gc,j,α,λ,apzqξα,λ,apzqec`
j

where, for each tuple pc, j,α,λ,aq, the Puiseux series gc,j,α,λ,apzq is a Q-
linear combinations of the fc,j1,α,λ,a{ppzpq with j1 ě j. But, it follows from
the Puiseux case considered at the very beginning of the proof that the
fc,j,α,λ,apz

pq satisfy pOrq. So, the gc,j,α,λ,a satisfy pOrq as well and, hence,
rps˚f satisfies pP ´Orq.

Conversely, assume that rps˚f satisfies pP ´ Orq. Since ξα,λ,apz
1
p q “

ξα,λ,a{ppzq, if we write

rps˚f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛ

gc,j,α,λ,apzqξα,λ,apzqec`
j

where the gc,j,α,λ,a P P satisfy pOrq, then

f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛ

gc,j,α,λ,apz
1
p qξα,λ,apz

1
p qc´1ecp`´ 1qj(77)

“
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛ

fc,j,α,λ,apzqξα,λ,apzqec`
j

where, for each tuple pc, j,α,λ,aq, the Puiseux series fc,j,α,λ,apzq is a Q-
linear combinations of the gc,j1,α,λ,papz

1
p q with j1 ě j. But, it follows from

the Puiseux case considered at the very beginning of the proof that the
gc,j,α,λ,apz

1
p q satisfy pOrq. So, the fc,j,α,λ,a satisfy pOrq as well and, hence,

f satisfies pP ´Orq.

General case. The case k P Zě1 follows immediately from the previous
particular cases by using the fact that rνpks˚ “ rpsk˚rνs˚. If k P Zď´1, then,
using the equality rνs˚f “ rp´ks˚rνp

ks˚f and the cases considered above,
we get that f satisfies pP ´ Orq if and only if rνs˚f satisfies pP ´ Orq if
and only if rp´ks˚rνpks˚f “ rνs˚f satisfies pP ´Orq if and only if rνpks˚f
satisfies pP ´Orq. This concludes the proof. �

Proof of Theorem 11. Let f be a generalized p-Mahler series satisfying pP´

Orq for some r P t1, 2, 3u. We have to prove that the minimal p-Mahler
equation of f over K8 has a full basis of generalized p-Mahler series solutions
satisfying pP ´Orq.
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Let first consider the case r “ 1. Theorem 4 ensures that the minimal
p-Mahler equation of f over K8 has a full basis of generalized p-Mahler se-
ries solutions. Theorem 8 guaranties that any generalized p-Mahler series
satisfies pP ´O1q. This concludes the proof in the case r “ 1.

We now suppose that r “ 2 (resp. r “ 3).

Let us first consider the special case when

f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqP
Ť

tPZě0
Ztě0ˆpQ

ˆ
qtˆZtą0

fc,j,α,λ,aξα,λ,aec`
j

with fc,j,α,λ,a P Qppzqq. Proposition 51 ensures that the p-Mahler de-
nominator df P Qrzs of f has its non-zero roots in U (resp. Up). Let
a1, . . . , ae P Qrzs be such that f is annihilated by the operator

(78) df ´
e
ÿ

i“1

aiφ
i
p.

Proposition 48 guaranties that (78) has e Q-linearly independent generalized
p-Mahler series solutions f1, . . . , fe satisfying pP ´ O2q (resp. pP ´ O3q).
Since the minimal p-Mahler operator of f is a right factor of (78), it has a
full set of solutions made of Q-linear combinaisons of f1, . . . , fe. Such linear
combinaisons satisfy pP ´O2q (resp. pP ´O3q), as wanted.

We now come to the general case when

f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛ

fc,j,α,λ,aξα,λ,aec`
j

with fc,j,α,λ,a P P. For any ν P Zě1 relatively prime with p and any k P Zě0,
we have

rνpks˚f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqPΛ

fc,j,α,λ,apz
νpkqξα,λ,νpkapzqc

kecp`` kq
j .

From now on, we fix ν and k such that the fc,j,α,λ,apzνp
k
q belong to Qppzqq

and the νpka involved in the previous sum have entries in Zą0. Then, we
have

rνpks˚f “
ÿ

pc,jqPQˆˆZě0,pα,λ,aqP
Ť

tPZě0
Ztě0ˆpQ

ˆ
qtˆZtą0

gc,j,α,λ,aξα,λ,aec`
j

for some gc,j,α,λ,a P Qppzqq. Moreover, Lemma 53 guaranties that rνpks˚f is
solution of the p-Mahler equation

a0pz
νpkqy ` ¨ ¨ ¨ ` adpz

νpkqφdppyq “ 0

and Lemma 54 ensures that rνpks˚f satisfies pP ´ O2q (resp. pP ´ O3q).
It follows from the first part of the proof that that the minimal equation
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over K8 of rνpks˚f has a full basis of generalized p-Mahler series satisfying
pP ´O2q (resp. pP ´O3q). Taking the image of this basis by rνpks´1˚ , we
get the desired result. �

7. Final remark about the Purity Theorem

Theorem 11 states that the property pP´O1q, pP´O2q or pP´O3q of a
generalized p-Mahler series is inherited by the other solutions of its minimal
equation. The following result shows that this is not true for pP ´O4q nor
for pP ´O5q.

Proposition 55. There exists a p-Mahler power series satisfying pP ´O4q

and pP ´O5q having the following property: its minimal p-Mahler equation
has a generalized p-Mahler series solution which does neither satisfy pP´O4q

nor pP ´O5q.

Proof. Let p “ 2. Consider the following equation

(79) ypzq ` pz ´ 1qypz2q ´ 2zypz4q “ 0.

It is well-known that one of its solutions is the generating series fRS P Qrrzss
of the Rudin-Shapiro sequence:

panqnPZě0 “ 1, 1, 1,´1, 1, 1,´1, 1, 1, 1, 1,´1,´1,´1, 1, . . . .

It’s coefficients belong to t´1, 1u, so that it satisfies pO5q and, thus, pP´O4q

and pP´O5q. A study of the Newton polygon of this equation, as in [Roq24],
shows that the exponents attached to this equation are 1 and ´1

2 . Thus, it
follows from [Roq24] and Theorem 27 that the system associated with (79)
has a fundamental matrix of solutions of the form F1F2eC , where

F1 P GL2pPq, F2 “

ˆ

1 ξ
0 1

˙

, eC “

ˆ

1 0
0 e´ 1

2

˙

,

with ξ P V1. The upper-left entry of F1 is solution of (79). Hence, up to
multiplication by a scalar, we may take it to be fRS. Let g “ pF1q1,2 P P be
the upper-right entry of F1. Then, a second solution of (79) is the generalized
2-Mahler series fe´ 1

2
where f “ fRSξ ` g P H .

Using the fact that φ2pe´ 1
2
q “ ´1

2e´ 1
2
, we obtain that f is solution of the

equation

(80) ypzq ´
1

2
pz ´ 1qypz2q ´

1

2
zypz4q “ 0.

Let

χpzq “
1

2
ξ0,´2,1pzq “ ´

8
ÿ

k“1

p´2qk´1z´1{2
k
P H

We claim that we can take ξ “ χ. To prove this claim it is sufficient to
prove that there exists a Puiseux series rg such that fRSχ ` rg is solution of
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(80). Since χpz2q “ ´2χpzq ´ 1
z , it is equivalent to prove that the following

equation has a Puiseux solution:

(81) ypzq ´
1

2
pz ´ 1qypz2q ´

1

2
zypz4q “

1

2z
fRSpzq ´

1

2z
fRSpz

4q .

A study of the Newton polygon associated to (81), as in [CDDM18], shows
that this equation has a power series solution. Thus, we can take ξ “ χ and
g to be this power series solution of (81). Since the decomposition

f “ p
1

2
fRSqξ0,´2,1 ` gξpq,pq,pq

is the standard decomposition of f , to conclude it is sufficient to prove that
g do not satisfy pO4q.

Using (81), it is easily checked that valz g “ 0. Looking at the coefficient
of z0 in (81) we obtain that g0 “ 1

3 . Let g “
ř

ně0 gnz
n. Looking at the

coefficient of z1 in (81) and using the fact that g P Qrrzss we obtain

g1 ´
1

2
g0 ´

1

2
g0 “

1

2
a2,

where fRS “
ř

ně0 anz
n. Thus, g1 “ 5

6 . Now, since g is a power series,
looking at the coefficient of z2n in (81) we obtain,

g2n “
1

2
a2n`1 ´

1

2
g2n´1

Since a2n`1 “ ˘1, it follows by induction on n that the 2-adic valuation of
g2n is equal to n`1. In particular, hpg2nq ě n. Since n “ logpHp2nqq{ logp2q,
we have hpgγq “ ΩplogpHpγqqq and gpzq does not satisfy pO4q. �
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